Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the DES algorithm instantiated with they key k=hamburgr. (This is 64 bits in ASCII. DES will automatically discard every 8th bit to arrive at

 

Consider the DES algorithm instantiated with they key k="hamburgr". (This is 64 bits in ASCII. DES will automatically discard every 8th bit to arrive at a 56 bit key). In the resulting key schedule, what are and ? Hint: Modify the des56.c code to make it show you this value.

#include "des56.h"

#include

/*

* Key schedule generation.

* We begin by pointlessly permuting the 56 useful key bits into

* two groups of 28 bits called C and D.

* bK_C and bK_D are indexed by C and D bit numbers, respectively,

* and give the key bit number (1..64) which should initialize that C/D bit.

* This is the "permuted choice 1" table.

*/

static tiny bK_C[28] = {

57, 49, 41, 33, 25, 17, 9,

1, 58, 50, 42, 34, 26, 18,

10, 2, 59, 51, 43, 35, 27,

19, 11, 3, 60, 52, 44, 36,

};

static tiny bK_D[28] = {

63, 55, 47, 39, 31, 23, 15,

7, 62, 54, 46, 38, 30, 22,

14, 6, 61, 53, 45, 37, 29,

21, 13, 5, 28, 20, 12, 4,

};

/*

* For speed, we invert these, building tables to map groups of

* key bits into the corresponding C and D bits.

* We represent C and D each as 28 contiguous bits right-justified in a

* word, padded on the left with zeros.

* If key byte `i' is said to contain bits Ki,0 (MSB) Ki,1 ... Ki,7 (LSB)

* then

* wC_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] gives the C bits for Ki,0..3,

* wD_K4[i][Ki,0 Ki,1 Ki,2 Ki,3] the corresponding D bits,

* wC_K3[i][Ki,4 Ki,5 Ki,6] the C bits for Ki,4..6,

* and wD_K3[i][Ki,4 Ki,5 Ki,6] the D bits for Ki,4..6.

* Ki,7 is ignored since it is the nominal parity bit.

* We could just use a single table for [i][Ki,0 .. Ki,6] but that

* would take a lot of storage for such a rarely-used function.

*/

static word32 wC_K4[8][16], wC_K3[8][8];

static word32 wD_K4[8][16], wD_K3[8][8];

/*

* Successive Ci and Di for the sixteen steps in the key schedule are

* created by independent 28-bit left circular shifts on C and D.

* The shift count varies with the step number.

*/

static tiny preshift[16] = {

1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,

};

/*

* Each step in the key schedule is generated by selecting 48 bits

* (8 groups of 6 bits) from the appropriately shifted Ci and Di.

* bCD_KS, indexed by the key schedule bit number, gives the bit number

* in CD (CD1 = MSB of C, CD28 = LSB of C, CD29 = MSB of D, CD56 = LSB of D)

* which determines that bit of the key schedule.

* Note that only C bits (1..28) appear in the first (upper) 24 bits of

* the key schedule, and D bits (29..56) in the second (lower) 24 bits.

* This is the "permuted-choice-2" table.

*/

static tiny bCD_KS[48] = {

14, 17, 11, 24, 1, 5,

3, 28, 15, 6, 21, 10,

23, 19, 12, 4, 26, 8,

16, 7, 27, 20, 13, 2,

41, 52, 31, 37, 47, 55,

30, 40, 51, 45, 33, 48,

44, 49, 39, 56, 34, 53,

46, 42, 50, 36, 29, 32,

};

/*

* We invert bCD_KS into a pair of tables which map groups of 4

* C or D bits into corresponding key schedule bits.

* We represent each step of the key schedule as 8 groups of 8 bits,

* with the 6 real bits right-justified in each 8-bit group.

* hKS_C4[i][C4i+1 .. C4i+4] gives the bits in the high order (first four)

* key schedule "bytes" which correspond to C bits 4i+1 .. 4i+4.

* lKS_D4[i][D4i+1 .. D4i+4] gives the appropriate bits in the latter (last 4)

* key schedule bytes, from the corresponding D bits.

*/

static word32 hKS_C4[7][16];

static word32 lKS_D4[7][16];

/*

* Encryption/decryption.

* Before beginning, and after ending, we perform another useless permutation

* on the bits in the data block.

*

* The initial permutation and its inverse, final permutation

* are too simple to need a table for. If we break the input I1 .. I64 into

* 8-bit chunks I0,0 I0,1 ... I0,7 I1,0 I1,1 ... I7,7

* then the initial permutation sets LR as follows:

* L = I7,1 I6,1 I5,1 ... I0,1 I7,3 I6,3 ... I0,3 I7,5 ... I0,5 I7,7 ... I0,7

* and

* R = I7,0 I6,0 I5,0 ... I0,0 I7,2 I6,2 ... I0,2 I7,4 ... I0,4 I7,6 ... I0,6

*

* If we number the bits in the final LR similarly,

* L = L0,0 L0,1 ... L3,7 R = R0,0 R0,1 ... R3,7

* then the output is

* O = R0,7 L0,7 R1,7 L1,7 ... R3,7 L3,7 R0,6 L0,6 ... L3,6 R0,5 ... R3,0 L3,0

*

* To speed I => LR shuffling we use an array of 32-bit values indexed by

* 8-bit input bytes.

* wL_I8[ 0 I0,1 0 I0,3 0 I0,5 0 I0,7 ] = the corresponding L bits.

* Other R and L bits are derived from wL_I8 by shifting.

*

* To speed LR => O shuffling, an array of 32-bit values indexed by 4-bit lumps:

* wO_L4[ L0,4 L0,5 L0,6 L0,7 ] = the corresponding high-order 32 O bits.

*/

static word32 wL_I8[0x55 + 1];

static word32 wO_L4[16];

/*

* Core of encryption/decryption.

* In each key schedule stage, we:

* take 8 overlapping groups of 6 bits each from R

* (the NBS tabulates the bit selections in the E table,

* but it's so simple we just use shifting to get the right bits)

* XOR each group with the corresponding bits from the key schedule

* Use the resulting 6 bits as an index into the appropriate S table

* (there are 8 such tables, one per group of 6 bits)

* Each S entry yields 4 bits.

* The 8 groups of 4 bits are catenated into a 32-bit value.

* Those 32 bits are permuted according to the P table.

* Finally the permuted 32-bit value is XORed with L and becomes

* the R value for the next stage, while the previous R becomes the new L.

*

* Here, we merge the P permutation with the S tables by making the

* S entries be 32-bit masks, already suitably permuted.

* Also, the bits in each six-bit group must be permuted before use as

* an index into the NBS-tabulated S tables.

* We rearrange entries in wPS so that natural bit order can be used.

*/

static word32 wPS[8][64];

static tiny P[32] = {

16, 7, 20, 21,

29, 12, 28, 17,

1, 15, 23, 26,

5, 18, 31, 10,

2, 8, 24, 14,

32, 27, 3, 9,

19, 13, 30, 6,

22, 11, 4, 25,

};

static tiny S[8][64] = {

{

14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7,

0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8,

4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0,

15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13,

},

{

15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10,

3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5,

0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15,

13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9,

},

{

10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8,

13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1,

13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7,

1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12,

},

{

7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15,

13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9,

10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4,

3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14,

},

{

2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9,

14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6,

4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14,

11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3,

},

{

12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11,

10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8,

9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6,

4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13,

},

{

4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1,

13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6,

1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2,

6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12,

},

{

13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7,

1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2,

7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8,

2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11,

},

};

static void buildtables( void )

{

register int i, j;

register word32 v;

word32 wC_K[64], wD_K[64];

word32 hKS_C[28], lKS_D[28];

int Smap[64];

word32 wP[32];

#if USG

# define ZERO(array) memset((char *)(array), '\0', sizeof(array))

#else

# if BSD

# define ZERO(array) bzero((char *)(array), sizeof(array))

# else

# define ZERO(array) { register word32 *p = (word32 *)(array); \

i = sizeof(array) / sizeof(*p); \

do { *p++ = 0; } while(--i > 0); \

}

# endif

#endif

/* Invert permuted-choice-1 (key => C,D) */

ZERO(wC_K);

ZERO(wD_K);

v = 1;

for(j = 28; --j >= 0; ) {

wC_K[ bK_C[j] - 1 ] = wD_K[ bK_D[j] - 1 ] = v;

v += v; /* (i.e. v <<= 1) */

}

for(i = 0; i < 64; i++) {

int t = 8 >> (i & 3);

for(j = 0; j < 16; j++) {

if(j & t) {

wC_K4[i >> 3][j] |= wC_K[i];

wD_K4[i >> 3][j] |= wD_K[i];

if(j < 8) {

wC_K3[i >> 3][j] |= wC_K[i + 3];

wD_K3[i >> 3][j] |= wD_K[i + 3];

}

}

}

/* Generate the sequence 0,1,2,3, 8,9,10,11, ..., 56,57,58,59. */

if(t == 1) i += 4;

}

/* Invert permuted-choice-2 */

ZERO(hKS_C);

ZERO(lKS_D);

v = 1;

for(i = 24; (i -= 6) >= 0; ) {

j = i+5;

do {

hKS_C[ bCD_KS[j] - 1 ] = lKS_D[ bCD_KS[j+24] - 28 - 1 ] = v;

v += v; /* Like v <<= 1 but may be faster */

} while(--j >= i);

v <<= 2; /* Keep byte aligned */

}

for(i = 0; i < 28; i++) {

v = 8 >> (i & 3);

for(j = 0; j < 16; j++) {

if(j & v) {

hKS_C4[i >> 2][j] |= hKS_C[i];

lKS_D4[i >> 2][j] |= lKS_D[i];

}

}

}

/* Initial permutation */

for(i = 0; i <= 0x55; i++) {

v = 0;

if(i & 64) v = (word32) 1 << 24;

if(i & 16) v |= (word32) 1 << 16;

if(i & 4) v |= (word32) 1 << 8;

if(i & 1) v |= 1;

wL_I8[i] = v;

}

/* Final permutation */

for(i = 0; i < 16; i++) {

v = 0;

if(i & 1) v = (word32) 1 << 24;

if(i & 2) v |= (word32) 1 << 16;

if(i & 4) v |= (word32) 1 << 8;

if(i & 8) v |= (word32) 1;

wO_L4[i] = v;

}

/* Funny bit rearrangement on second index into S tables */

for(i = 0; i < 64; i++) {

Smap[i] = (i & 0x20) | (i & 1) << 4 | (i & 0x1e) >> 1;

}

/* Invert permutation P into mask indexed by R bit number */

v = 1;

for(i = 32; --i >= 0; ) {

wP[ P[i] - 1 ] = v;

v += v;

}

/* Build bit-mask versions of S tables, indexed in natural bit order */

for(i = 0; i < 8; i++) {

for(j = 0; j < 64; j++) {

int k, t;

t = S[i][ Smap[j] ];

for(k = 0; k < 4; k++) {

if(t & 8)

wPS[i][j] |= wP[4*i + k];

t += t;

}

}

}

}

void fsetkey(char key[8], keysched *ks)

{

register int i;

register word32 C, D;

static int built = 0;

if(!built) {

buildtables();

built = 1;

}

C = D = 0;

for(i = 0; i < 8; i++) {

register int v;

v = key[i] >> 1; /* Discard "parity" bit */

C |= wC_K4[i][(v>>3) & 15] | wC_K3[i][v & 7];

D |= wD_K4[i][(v>>3) & 15] | wD_K3[i][v & 7];

}

/*

* C and D now hold the suitably right-justified

* 28 permuted key bits each.

*/

for(i = 0; i < 16; i++) {

#ifdef CRAY

#define choice2(x, v) x[6][v&15] | x[5][(v>>4)&15] | x[4][(v>>8)&15] | \

x[3][(v>>12)&15] | x[2][(v>>16)&15] | x[1][(v>>20)&15] | \

x[0][(v>>24)&15]

#else

register word32 *ap;

# define choice2(x, v) ( \

ap = &(x)[0][0], \

ap[16*6 + (v&15)] | \

ap[16*5 + ((v>>4)&15)] | ap[16*4 + ((v>>8)&15)] | \

ap[16*3 + ((v>>12)&15)] | ap[16*2 + ((v>>16)&15)] | \

ap[16*1 + ((v>>20)&15)] | ap[16*0 + ((v>>24)&15)] )

#endif

/* 28-bit left circular shift */

C <<= preshift[i];

C = ((C >> 28) & 3) | (C & (((word32)1<<28) - 1));

ks->KS[i].h = choice2(hKS_C4, C);

D <<= preshift[i];

D = ((D >> 28) & 3) | (D & (((word32)1<<28) - 1));

ks->KS[i].l = choice2(lKS_D4, D);

}

}

void printworld32(word32 num, char side)

{

unsigned char a[4];

a[0] = (num >>24) & 0xFF;

a[1] = (num >> 16) & 0xFF;

a[2] = (num >> 8) & 0xFF;

a[3] = num & 0xFF;

if (side == 'L')

{

printf("Current state: 0x%s " , bin2hex(a,4));

}

else

{

printf("%s " , bin2hex(a,4));

}

void

fencrypt(char block[8], int decrypt, keysched *ks)

{

int i;

register word32 L, R;

register struct keystage *ksp;

register word32 *ap;

/* Initial permutation */

L = R = 0;

i = 7;

ap = wL_I8;

do {

register int v;

v = block[i]; /* Could optimize according to ENDIAN */

L = ap[v & 0x55] | (L << 1);

R = ap[(v >> 1) & 0x55] | (R << 1);

} while(--i >= 0);

if(decrypt) {

ksp = &ks->KS[15];

} else {

ksp = &ks->KS[0];

}

#ifdef CRAY

# define PS(i,j) wPS[i][j]

#else

# define PS(i,j) ap[64*(i) + (j)]

ap = &wPS[0][0];

#endif

i = 16;

do {

printworld32(L,'L');

printworld32(R,'R');

register word32 k, tR;

tR = (R >> 15) | (R << 17);

k = ksp->h;

L ^= PS(0, ((tR >> 12) ^ (k >> 24)) & 63)

| PS(1, ((tR >> 8) ^ (k >> 16)) & 63)

| PS(2, ((tR >> 4) ^ (k >> 8)) & 63)

| PS(3, (tR ^ k) & 63);

k = ksp->l;

L ^= PS(4, ((R >> 11) ^ (k >> 24)) & 63)

| PS(5, ((R >> 7) ^ (k >> 16)) & 63)

| PS(6, ((R >> 3) ^ (k >> 8)) & 63)

| PS(7, ((tR >> 16) ^ k) & 63);

tR = L;

L = R;

R = tR;

if(decrypt)

ksp--;

else

ksp++;

} while(--i > 0);

{

register word32 t;

#ifdef CRAY

# define FP(k) (wO_L4[ (L >> (k)) & 15 ] << 1 | wO_L4[ (R >> (k)) & 15 ])

#else

# define FP(k) (ap[ (L >> (k)) & 15 ] << 1 | ap[ (R >> (k)) & 15 ])

ap = wO_L4;

#endif

t = FP(0) | (FP(8) | (FP(16) | (FP(24) << 2)) << 2) << 2;

R = FP(4) | (FP(12) | (FP(20) | (FP(28) << 2)) << 2) << 2;

L = t;

}

{

register word32 t;

register char *bp;

bp = &block[7];

t = R;

*bp = t & 255;

*--bp = (t >>= 8) & 255;

*--bp = (t >>= 8) & 255;

*--bp = (t >> 8) & 255;

t = L;

*--bp = t & 255;

*--bp = (t >>= 8) & 255;

*--bp = (t >>= 8) & 255;

*--bp = (t >> 8) & 255;

}

}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Professional Microsoft SQL Server 2014 Administration

Authors: Adam Jorgensen, Bradley Ball

1st Edition

111885926X, 9781118859261

More Books

Students also viewed these Databases questions