Answered step by step
Verified Expert Solution
Link Copied!

Question

00
1 Approved Answer

Consider the function f(x)=ebx on the domain AxA. Assume b is a real, positive constant (a) Express f(x) as a complex Fourier series. Comment on

image text in transcribed Consider the function f(x)=ebx on the domain AxA. Assume b is a real, positive constant (a) Express f(x) as a complex Fourier series. Comment on the behaviour of the Fourier coefficients cn in the limit n. (b) Show that f can also be written as a real Fourier series, that is, an expansion in terms of sine and cosine functions. f(x)=a0+k=1akcos(2kx/L)+bksin(2kx/L) (c) Compare f(x) with the truncated Fourier series and show that the series approaches the true function as the number of terms is increased. You'll find the real series easier to work with than the complex one. Plot f(x) and the series on the same panel. On a separate panel plot the residuals to show that they decrease as the number of terms is increased. (d) Consider g(x)=df/dx. Write down and sketch this function and note the behaviour around x=0. Derive the Fourier series for g by differentiating the result from part (b). Comment on the behaviour of the Fourier coefficients in the limit of large n for this case. Once again show graphically the convergence of the Fourier series to to g(x) as was done for f(x). Consider the function f(x)=ebx on the domain AxA. Assume b is a real, positive constant (a) Express f(x) as a complex Fourier series. Comment on the behaviour of the Fourier coefficients cn in the limit n. (b) Show that f can also be written as a real Fourier series, that is, an expansion in terms of sine and cosine functions. f(x)=a0+k=1akcos(2kx/L)+bksin(2kx/L) (c) Compare f(x) with the truncated Fourier series and show that the series approaches the true function as the number of terms is increased. You'll find the real series easier to work with than the complex one. Plot f(x) and the series on the same panel. On a separate panel plot the residuals to show that they decrease as the number of terms is increased. (d) Consider g(x)=df/dx. Write down and sketch this function and note the behaviour around x=0. Derive the Fourier series for g by differentiating the result from part (b). Comment on the behaviour of the Fourier coefficients in the limit of large n for this case. Once again show graphically the convergence of the Fourier series to to g(x) as was done for f(x)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access with AI-Powered Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Accounting questions