Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Consider the integral 1-1 But now we try the hyperbolic trigonometric substitution dx Since = du 2*cosh(U) I= cosh (u) V/1+sinh2(u) The reason this

Consider the integral 1-1 But now we try the hyperbolic trigonometric substitution dx Since = du 2*cosh(U) I= cosh (u) V/1+sinh2(u) The reason this substitution works so well is because the identity -S u a = 2sinh(u). we can rewrite this integral as: 1 /2+x -dz. Then as a function in terms of the original variable z I= cosh? (u) sinh?(u)=1 can be rearranged to simplify the square root. The integral can be evaluated first as a function of u I= +C. Note: the Maple syntax for cosh(u) is arccosh (u) du. +C

Step by Step Solution

3.36 Rating (159 Votes )

There are 3 Steps involved in it

Step: 1

Given I 227212 Lef me 2 Sinh u dre 2 ... blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Income Tax Fundamentals 2013

Authors: Gerald E. Whittenburg, Martha Altus Buller, Steven L Gill

31st Edition

1111972516, 978-1285586618, 1285586611, 978-1285613109, 978-1111972516

More Books

Students also viewed these Accounting questions