Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Could you share MATLAB code for this python example: import numpy as np # Function to compute MSE of DOA estimates def compute _ mse

Could you share MATLAB code for this python example:
import numpy as np
# Function to compute MSE of DOA estimates
def compute_mse(true_doa, estimated_doa):
return np.mean((true_doa - estimated_doa)**2)
# Part (b): Accuracy for Different Noise Variances
noise_variances = np.linspace(0.1* sigma_n2,10* sigma_n2,10)
mse_noise =[]
for var in noise_variances:
mse_values =[]
for _ in range(100): # Monte Carlo simulations
noise = np.sqrt(var /2)*(np.random.randn(M, N)+1j * np.random.randn(M, N))
X = A @ S + noise
R = X @ X.conj().T / N
eigvals, eigvecs = eigh(R)
noise_eigvecs = eigvecs[:, :-len(thetas)]
P_music = music_spectrum(theta_scan, A, noise_eigvecs)
estimated_doa = theta_scan[np.argmax(P_music)]
mse_values.append(compute_mse(thetas, estimated_doa))
mse_noise.append(np.mean(mse_values))
# Part (c): Accuracy for Different Number of Sensors
sensor_counts = np.arange(M,10* M +1, M)
mse_sensors =[]
for m in sensor_counts:
A = steering_vector(m, d, thetas)
mse_values =[]
for _ in range(100): # Monte Carlo simulations
noise = np.sqrt(sigma_n2/2)*(np.random.randn(m, N)+1j * np.random.randn(m, N))
X = A @ S[:m, :]+ noise
R = X @ X.conj().T / N
eigvals, eigvecs = eigh(R)
noise_eigvecs = eigvecs[:, :-len(thetas)]
P_music = music_spectrum(theta_scan, A, noise_eigvecs)
estimated_doa = theta_scan[np.argmax(P_music)]
mse_values.append(compute_mse(thetas, estimated_doa))
mse_sensors.append(np.mean(mse_values))
# Part (d): Accuracy for Different Number of Snapshots
snapshot_counts = np.arange(int(0.1* N), int(10* N)+1, int(0.1* N))
mse_snapshots =[]
for n in snapshot_counts:
mse_values =[]
for _ in range(100): # Monte Carlo simulations
noise = np.sqrt(sigma_n2/2)*(np.random.randn(M, n)+1j * np.random.randn(M, n))
X = A @ S[:, :n]+ noise
R = X @ X.conj().T / n
eigvals, eigvecs = eigh(R)
noise_eigvecs = eigvecs[:, :-len(thetas)]
P_music = music_spectrum(theta_scan, A, noise_eigvecs)
estimated_doa = theta_scan[np.argmax(P_music)]
mse_values.append(compute_mse(thetas, estimated_doa))
mse_snapshots.append(np.mean(mse_values))
# Plotting MSE results
plt.figure(figsize=(12,8))
# Noise Variance
plt.subplot(3,1,1)
plt.plot(noise_variances, mse_noise, marker='o')
plt.title('MSE vs. Noise Variance')
plt.xlabel('Noise Variance')
plt.ylabel('MSE')
# Number of Sensors
plt.subplot(3,1,2)
plt.plot(sensor_counts, mse_sensors, marker='o')
plt.title('MSE vs. Number of Sensors')
plt.xlabel('Number of Sensors')
plt.ylabel('MSE')
# Number of Snapshots
plt.subplot(3,1,3)
plt.plot(snapshot_counts, mse_snapshots, marker='o')
plt.title('MSE vs. Number of Snapshots')
plt.xlabel('Number of Snapshots')
plt.ylabel('MSE')
plt.tight_layout()
plt.show()

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Concepts

Authors: David Kroenke

4th Edition

0136086535, 9780136086536

More Books

Students also viewed these Databases questions

Question

Define self-discipline and cite its benefits.

Answered: 1 week ago

Question

2. What is the meaning and definition of Banking?

Answered: 1 week ago

Question

3.What are the Importance / Role of Bank in Business?

Answered: 1 week ago

Question

Define an unfair labor practice and provide three or four examples.

Answered: 1 week ago