Question: CREATE TABLE person ( ID NUMBER, Name VARCHAR2 (20), Home VARCHAR2 (30), Age NUMBER (2), Occupation VARCHAR2 (45), Gender VARCHAR2 (6), Salary NUMBER, CONSTRAINTS PK_person

 CREATE TABLE person ( ID NUMBER, Name VARCHAR2 (20), Home VARCHAR2(30), Age NUMBER (2), Occupation VARCHAR2 (45), Gender VARCHAR2 (6), Salary NUMBER,CONSTRAINTS PK_person PRIMARY KEY (ID) CREATE TABLE Phone ( ID number, brandvarchar2 (40), model varchar2 (49), screensize number); INSERT INTO person VALUES (1,aisha', 'Dhaka', 25, Teacher', 'Female', 50000); INSERT INTO person VALUES (2, 'Saad','Dhaka', 56, 'Service', 'Male', 60000); INSERT INTO person VALUES (3, 'Rakeen', 'ctg',71, 'Retired', 'Male', 10000); INSERT INTO person VALUES (6, 'Ilma', 'Gazipur', 54,

CREATE TABLE person ( ID NUMBER, Name VARCHAR2 (20), Home VARCHAR2 (30), Age NUMBER (2), Occupation VARCHAR2 (45), Gender VARCHAR2 (6), Salary NUMBER, CONSTRAINTS PK_person PRIMARY KEY (ID) CREATE TABLE Phone ( ID number, brand varchar2 (40), model varchar2 (49), screensize number); INSERT INTO person VALUES (1, aisha', 'Dhaka', 25, Teacher', 'Female', 50000); INSERT INTO person VALUES (2, 'Saad', 'Dhaka', 56, 'Service', 'Male', 60000); INSERT INTO person VALUES (3, 'Rakeen', 'ctg', 71, 'Retired', 'Male', 10000); INSERT INTO person VALUES (6, 'Ilma', 'Gazipur', 54, 'Doctor', 'Female', 55000); INSERT INTO person VALUES (7, 'Rajib', 'Gazipur', 65, 'Musician', 'Male', 5000); INSERT INTO person VALUES (8, 'Raisa', 'Dhaka', 56, 'Engineer', 'Female', 60000); INSERT INTO person VALUES (9, 'Sakib', 'ctg', 23, 'Student', 'Male', 1000); INSERT INTO person VALUES (10, 'Mosaddek', 'Comilla', 32, 'Teacher', 'Male', 45000); INSERT INTO person VALUES (11, 'Jarin', 'Comilla', 51, 'Farmer', 'Female', 20000); INSERT INTO person VALUES (12, 'Rudaba', 'Khulna', 15, 'Student', 'Female', 1500); INSERT INTO person VALUES (13, 'Sami', Ctg', 25, 'Business', 'Male', 100000); INSERT INTO person VALUES (14, 'Nihal', 'Comilla', 52, 'Doctor', 'Male', 70000); INSERT INTO person VALUES (15, 'Rafid', 'Gazipur', 53, 'Teacher', 'Male', 50000); INSERT INTO person VALUES (16, 'Medha', 'Dhaka', 35, 'Musician', 'Female', 50000); INSERT INTO person VALUES (17, 'Sakib', 'Khulna', 43, 'Service', 'Male', 50000); INSERT INTO person VALUES (18, 'Zobaeir', 'Khulna', 34, 'Service', 'Male', 45000); INSERT INTO person VALUES (19, 'Shahriyar', 'ctg', 16, 'Student', 'Male', 500); INSERT INTO person VALUES (20, 'Mahir', 'Comilla', 32, 'Business', 'Male', 120000); INSERT INTO person VALUES (21, 'Mushfiqur', 'ctg', 25, 'Musician', 'Male', 100000); INSERT INTO person VALUES (22, 'Najish', 'Gazipur', 14, 'Student', 'Male', 400); INSERT INTO person VALUES (23, 'Bandhan', 'Dhaka', 25, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (24, 'Shadman', 'ctg', 28, 'Teacher', 'Male', 80000); INSERT INTO person VALUES (25, 'Faria', 'Dhaka', 25, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (26, 'Taki', 'Dhaka', 26, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (27, 'Tanzir', 'Dhaka', 45, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (28, 'Alvi', 'ctg', 23, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (29, 'Nasib', 'Dhaka', 21, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (30, 'Mim', 'Dhaka', 75, 'Teacher', 'Female', 40000); INSERT INTO person VALUES (31, 'Ornob', 'Dhaka', 43, Student', 'Male', 50000); INSERT INTO person VALUES (32, 'Shuvo', 'Dhaka', 2, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (33, 'Anika', 'Dhaka', 56, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (34, 'Ikra', 'Ctg', 78, 'Teacher', 'Female', 50000); INSERT INTO person VALUES (35, 'ojhor', 'Dhaka', 12, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (36, 'Saadman', 'Dhaka', 32, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (37, 'Nafiz', 'Dhaka', 15, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (38, 'Arman', 'Dhaka', 55, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (39, 'Faysal', 'Dhaka', 23, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (40, 'Syed', 'Dhaka', 22, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (41, 'Abidure', 'Dhaka', 21, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (42, 'Nafisa', 'Dhaka', 24, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (44, 'Abu', 'ctg', 25, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (45, 'Maruf', 'Dhaka', 26, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (46, 'Omar', 'Dhaka', 27, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (47, 'Mahdia', 'Dhaka', 28, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (48, 'Nazneen', 'Dhaka', 29, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (49, 'Ahikul', 'Dhaka', 30, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (50, 'Asif', 'Dhaka', 31, 'Musician', 'Male', 50000); INSERT INTO person VALUES (51, 'Abir', 'ctg', 32, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (52, 'Afrin', 'Dhaka', 22, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (53, 'Evan', 'Dhaka', 78, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (55, 'Muhib', 'ctg', 66, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (56, 'Zizan', 'Dhaka', 90, 'Musician', 'Male', 40000); INSERT INTO person VALUES (57, 'Tansi', 'Dhaka', 44, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (58, 'Mumu', 'ctg', 87, 'Engineer', 'Female', 1000); INSERT INTO person VALUES (59, 'Elma', 'Dhaka', 25, 'Teacher', 'Female', 9000); INSERT INTO person VALUES (60, 'Emon', 'Dhaka', 33, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (61, 'Tanzil', 'Dhaka', 89, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (62, 'Nafi', 'Dhaka', 75, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (63, 'Azraf', 'ctg', 54, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (64, 'Istiaque', 'Dhaka', 44, 'Engineer', 'Male', 1000); INSERT INTO person VALUES (65, 'Ashraf', 'Dhaka', 32, 'Engineer', 'Male', 100); INSERT INTO person VALUES (66, 'Rubaiat', 'Dhaka', 45, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (67, 'Rafsan', 'Dhaka', 2, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (68, 'Preetu', 'Dhaka', 12, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (69, 'Abdullah', 'Dhaka', 34, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (70, 'Shafi', 'Dhaka', 65, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (71, 'Nova', 'ctg', 25, 'Engineer', 'Female', 200); INSERT INTO person VALUES (72, 'Rokoni', 'Dhaka', 61, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (73, 'Alsaad', 'Dhaka', 40, 'Teacher', 'Male', 10000); INSERT INTO person VALUES (74, 'Muhtasim', 'Dhaka', 39, 'Engineer', 'Male', 3000); INSERT INTO person VALUES (75, 'Galib', 'Jashore', 34, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (76, 'Keya', 'Dhaka', 45, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (77, 'Aunkon', 'Dhaka', 65, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (78, 'Sabbir', 'Dhaka', 53, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (80, 'Shams Shuvo', 'Dhaka', 21, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (81, 'Priota', 'Dhaka', 16, 'Engineer', 'Female', 50000); INSERT INTO person VALUES (82, 'Tameem', 'Comilla', 18, 'Engineer', 'Male', 50000); INSERT INTO person VALUES (83, 'Ibrahim', 'Dhaka', 19, 'Engineer', 'Male', 10); INSERT INTO Phone VALUES (1, Samsung', 'galaxy note 8', 4); INSERT INTO Phone VALUES (71, 'Xiaomi', 'Mi5', 6.5); INSERT INTO Phone VALUES (58, 'Apple', 'Iphone 8', 7.0); INSERT INTO Phone VALUES (51, 'Oneplus', 'three', 3); INSERT INTO Phone VALUES (44, 'Blackberry', 'X50', 6.0); INSERT INTO Phone VALUES (13, 'Samsung', 'galaxy s8', 7); INSERT INTO Phone VALUES (28, 'Huwaei', 'Honor 5', 6.1); Execute the the command given in "person.sql" file The sql file contains the necessary DDL statements to create and store values inside the table. The table is as follows: PERSON (ID, name, hometown, age, occupation, gender, salary) Phone (ID, brand, model, screensize) Now, execute the following queries: 1. Count the number of female persons. COUNT 20 2. What is the average age of people doing business? AVG_AGE 28.5 3. Show the list of persons where the occupation might be either Doctor or Teacher. ID NAME HOME AGE OCCUPATION GENDER SALARY 1 Maisha 6 Ilma 10 Mosaddek 14 Nihal 15 Rafid 24 Shadman 30 Mim 34 Ikra 59 Elma 73 Alsaad Dhaka Gazipur Comilla Comilla Gazipur Ctg Dhaka 25 Teacher 54 Doctor 32 Teacher 52 Doctor 53 Teacher 28 Teacher 75 Teacher 78 Teacher 25 Teacher 40 Teacher Female Female Male Male Male Male Female Female Female Male 50000 55080 45000 70000 50000 80080 40080 50000 9088 10000 Ctg Dhaka Dhaka 4. Make an ordered list of Teachers according to the salary. ID NAME HOME AGE OCCUPATION GENDER SALARY 59 Elma 73 Alsaad 30 Mim 10 Mosaddek 1 Maisha 15 Rafid 34 Ikra 24 Shadman Dhaka Dhaka Dhaka Comilla Dhaka Gazipur 25 Teacher 40 Teacher 75 Teacher 32 Teacher 25 Teacher 53 Teacher 78 Teacher 28 Teacher Female Male Female Male Female Male Female Male 9000 10000 40000 45000 50000 50000 50000 80000 Ctg Ctg 5. Make a descending ordered list based on the age and show the names and age only. If the age is same, sort in alphabetical order. (Result shows limited rows, there are more). NAME AGE 2 2 12 12 ANNNN Rafsan Shuvo ojhor Preetu Najish Nafiz Rudaba Priota Shahriyar Tameem Ibrahim Abidure Nasib 15 15 16 16 18 19 21 21 6. What is the total salary of all the Musicians of the table? Rename the total salary as TOTAL_SALARY TOT_SAL 245000

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!