Data Set for Assignment 4
Could you give some suggestion for question 1 and 2
Occupational Title
Education Level (years)
Income ($)
Percent of Workforce that are Women
Prestige Score
GOV_ADMINISTRATORS
13.11
12351
11.16
68.8
GENERAL_MANAGERS
12.26
25879
4.02
69.1
ACCOUNTANTS
12.77
9271
15.7
63.4
PURCHASING_OFFICERS
11.42
8865
9.11
56.8
CHEMISTS
14.62
8403
11.68
73.5
PHYSICISTS
15.64
11030
5.13
77.6
BIOLOGISTS
15.09
8258
25.65
72.6
ARCHITECTS
15.44
14163
2.69
78.1
CIVIL_ENGINEERS
14.52
11377
1.03
73.1
MINING_ENGINEERS
14.64
11023
0.94
68.8
SURVEYORS
12.39
5902
1.91
62
DRAUGHTSMEN
12.3
7059
7.83
60
COMPUTER_PROGRAMERS
13.83
8425
15.33
53.8
ECONOMISTS
14.44
8049
57.31
62.2
PSYCHOLOGISTS
14.36
7405
48.28
74.9
SOCIAL_WORKERS
14.21
6336
54.77
55.1
LAWYERS
15.77
19263
5.13
82.3
LIBRARIANS
14.15
6112
77.1
58.1
VOCATIONAL_COUNSELLORS
15.22
9593
34.89
58.3
MINISTERS
14.5
4686
4.14
72.8
UNIVERSITY_TEACHERS
15.97
12480
19.59
84.6
PRIMARY_SCHOOL_TEACHERS
13.62
5648
83.78
59.6
SECONDARY_SCHOOL_TEACHERS
15.08
8034
46.8
66.1
PHYSICIANS
15.96
25308
10.56
87.2
VETERINARIANS
15.94
14558
4.32
66.7
OSTEOPATHS_CHIROPRACTORS
14.71
17498
6.91
68.4
NURSES
12.46
4614
96.12
64.7
NURSING_AIDES
9.45
3485
76.14
34.9
PHYSIO_THERAPSTS
13.62
5092
82.66
72.1
PHARMACISTS
15.21
10432
24.71
69.3
MEDICAL_TECHNICIANS
12.79
5180
76.04
67.5
COMMERCIAL_ARTISTS
11.09
6197
21.03
57.2
RADIO_TV_ANNOUNCERS
12.71
7562
11.15
57.6
ATHLETES
11.44
8206
8.13
54.1
SECRETARIES
11.59
4036
97.51
46
TYPISTS
11.49
3148
95.97
41.9
BOOKKEEPERS
11.32
4348
68.24
49.4
TELLERS_CASHIERS
10.64
2448
91.76
42.3
COMPUTER_OPERATORS
11.36
4330
75.92
47.7
SHIPPING_CLERKS
9.17
4761
11.37
30.9
FILE_CLERKS
12.09
3016
83.19
32.7
RECEPTIONSTS
11.04
2901
92.86
38.7
MAIL_CARRIERS
9.22
5511
7.62
36.1
POSTAL_CLERKS
10.07
3739
52.27
37.2
TELEPHONE_OPERATORS
10.51
3161
96.14
38.1
COLLECTORS
11.2
4741
47.06
29.4
CLAIM_ADJUSTORS
11.13
5052
56.1
51.1
TRAVEL_CLERKS
11.43
6259
39.17
35.7
OFFICE_CLERKS
11
4075
63.23
35.6
SALES_SUPERVISORS
9.84
7482
17.04
41.5
COMMERCIAL_TRAVELLERS
11.13
8780
3.16
40.2
SALES_CLERKS
10.05
2594
67.82
26.5
NEWSBOYS
9.62
918
7
14.8
SERVICE_STATION_ATTENDANT
9.93
2370
3.69
23.3
INSURANCE__AGENTS
11.6
8131
13.09
47.3
REAL_ESTATE_SALESMEN
11.09
6992
24.44
47.1
BUYERS
11.03
7956
23.88
51.1
FIREFIGHTERS
9.47
8895
Occupational Title+ Education Level GOV_ADMINISTRATORS+ Income ($)+ (years)+ Percent of Workforce that GENERAL_MANAGERS+ Prestige Score+ 13.114 are Women+ ACCOUNTANTS+ 12351+ 12.26+ 11.164 PURCHASING_OFFICERS 25879+ 68.8+ 4.02+ CHEMISTS+ 12.774 9271+7 69.1+ PHYSICISTS+ 11.42+ 386547 15.7+ 53.4+ 14.62+ 9.114 BIOLOGISTS 8403+ 56 8-7 15.64+ 1030+ 1.68+ 73.5+7 ARCHITECTS+ 15.09+ 5 .13+ 77.6+74 CIVIL_ENGINEERS+ 8258+ 15.44+ 5.65 MINING_ENGINEERS+ 141634 72.647 14.524 2.69+ 1377+ 78.1+47 SURVEYORS+ 14.64+ 1.03+ 73.1+4 DRAUGHTSMEN+ 1023+ 12.394 0.94+7 COMPUTER_PROGRAMERS+ 5902+ 58.847 12.34 1.91+7 70594 62+ ECONOMISTS+ 8425+7 7.83+7 6047 PSYCHOLOGISTS+ 13.8340 14.44+ 15.33+ 80494 53.8+7 SOCIAL_WORKERS+ 14.36+ 57.31+ 62.247 LAWYERS+ 7405+7 14.21+ 48.28+7 LIBRARIANS + 6336+3 74.947 15.77+7 54.77+ 55.1+7 VOCATIONAL_COUNSELLORS+ 19263+ 14.15+7 MINISTERS+ 6112+ 5.13+ 15.22+7 77.1+ 82.3+ 9593+7 58.147 UNIVERSITY_TEACHERS+ 14.5+7 14.894 4686+ 58.3+7 47 PRIMARY_SCHOOL_TEACHERS+7 SECONDARY_SCHOOL_TEACHERS+ 15.97+ 4.14+ 12480+7 72.8+7 13.62+7 5648+ 19.594 PHYSICIANS+ 84. 6+ 7 15.0847 83.78+ 59.6+747 VETERINARIANS+ 8034+ 15.9647 46.8+ OSTEOPATHS_CHIROPRACTORS+ 25308+ 66.1+ 15.94+ 0.56+ NURSES+ 14558+ 87.2+ 14.71+ 4.32+ 66.7+ NURSING_AIDES+ 17498+ 12.46+7 6.91+ 68.4+747 PHYSIO_THERAPSTS+ 4614+7 9.45+7 96.12+ PHARMACISTS+ 3485+7 64.7+ 13.62+ MEDICAL_TECHNICIANS 5092+ 16.14+ 34.947 72.1+ COMMERCIAL_ARTISTS+ 15.214 10432+ 32.66 12.794 24.71+ 518047 69.347 RADIO_TV_ANNOUNCERS+ 76.04+ ATHLETES+ 11.094 6197+7 67.5+7 12.71+ 21.03+ 7562+7 57.2+ SECRETARIES+ 11.15 TYPISTS+ 11.44( 82064 57 .6+7 11.59+ 4036+ 8.13+ 54.147 47 BOOKKEEPERS+ 11.49+ 97.51+ TELLERS_CASHIERS+ 3148+ 11.324 4348+7 95.97 + 41.94347 COMPUTER_OPERATORS+ 10.64+ 68.24+7 SHIPPING_CLERKS+ 2448+ 49.4+74 11.36+ 91.76+ FILE_CLERKS+ 433047 42 3+7 4 9.17+ 75.92+7 4761+7 47.7+4 RECEPTIONSTS+ 12.0943 11.3747 MAIL_CARRIERS+ 3016+7 30.94747 11.04+ 83.19 POSTAL_CLERKS+ 2901+ 32.7+7 9.22+ 5511+ 92.86+ TELEPHONE_OPERATORS+ 10.07+7 7.62+7 38.7+ 36.1+ COLLECTORS+ 37390 10.5147 52.27+7 37.2+ CLAIM_ADJUSTORS+ 3161+ 11.2+ 36.14 TRAVEL_CLERKS+ 4741+7 11.1347 47.0647 38.1+7 5052+7 29.4+7 OFFICE_CLERKS+ 11.43+ 56.1+ 51.1+ + SALES_SUPERVISORS+ 625943 11+ 4075+7 19.17+ 35.7+ + COMMERCIAL_TRAVELLERS+ 9.84 47 63.234 SALES_CLERKS 7482+7 35.6+74 11.13+7 17.04+ 8780+ 41.5+747 NEWSBOYS+ 10.05+ 2594+7 3.16+ 40.247 47 SERVICE_STATION_ATTENDANT+ 9.62+7 918+ 57.82 26.5+7 INSURANCE_AGENTS+7 9.93+7 REAL_ESTATE_SALESMEN+ 11.6+7 237047 14.8+7 4 8131+7 3.6947 BUYERS+ 23.3+747 11.0947 13.0947 FIREFIGHTERS+ 6992+7 47.3+7 11.03+7 7956+7 24.44+7 47.14747 POLICEMEN+ 23.88 COOKS+ 9.47+ 8895+7 51.1+74 10.93+ 889147 0+7 43.547 BARTENDERS+ 7.74+ 1.65+7 51.6+7 FUNERAL_DIRECTORS+ 3116+7 29.7+7 BABYSITTERS+ 8.5+7 393047 10.5747 15.51+ LAUNDERERS+ 86947 20.2+7 9.46+ 6.01+ JANITORS+ 6114 54.947 47 7.33+ 96.53+ 3000+3 25.947 4 ELEVATOR_OPERATORS+ 7.11+7 69.31+ FARMERS+ 3472+ 20.8+7 47 7.58+ 33.57 + 17.3+7 47 FARM_WORKERS+ 3582+7 6.84+7 30.08 3643+7 20.147 4 7 ROTARY_WELL_DRILLERS+ 8.6+ 3.6+ 1656+7 44 .147 4 3.88+ 68600 27.7547 21.547 35.3+7+below. (1) To get a sense of the data, generate a scatterplot to examine the association between prestige score and years of education. Briefly describe the form, direction, and strength of the association between the variables. Calculate the correlation. (3 points )+ (2) Perform a simple linear regression. Generate a residual plot. Assess whether the model assumptions are met. Are there any outliers or influence points? If so, identify them by ID and comment on the effect of each on the regression. (3 points)- (3) Calculate the least squares regression equation that predicts prestige from education, income and percentage of women. Formally test whether the set of these predictors are associated with prestige at the " = 0.05 level. (6 points)- (4) If the overall model was significant, summarize the information about the contribution of each variable separately at the same significance level as used for the overall model (no need to do a formal 5-step procedure for each one, just comment on the results of the tests). Provide interpretations for any estimates that were significant. Calculate 95% confidence intervals where appropriate. (5 points)+ (5) Generate a residual plot showing the fitted values from the regression against the residuals. Is the fit of the model reasonable? Are there any outliers or influence points? (3 points)