Question
Descriptive Statistics Participants Mean Std. Deviation N Therapytype 2.00 2.0000 . 1 3.00 2.0000 . 1 4.00 1.7500 .50000 4 5.00 1.6000 .54772 5 6.00
Descriptive Statistics Participants Mean Std. Deviation N Therapytype 2.00 2.0000 . 1 3.00 2.0000 . 1 4.00 1.7500 .50000 4 5.00 1.6000 .54772 5 6.00 1.5000 .57735 4 7.00 1.1667 .40825 6 8.00 1.0000 . 1 9.00 1.5000 .70711 2 Total 1.5000 .51075 24 Therapy_time 2.00 1.0000 . 1 3.00 1.0000 . 1 4.00 1.0000 .00000 4 5.00 1.6000 .54772 5 6.00 1.7500 .50000 4 7.00 1.5000 .54772 6 8.00 2.0000 . 1 9.00 2.0000 .00000 2 Total 1.5000 .51075 24
Multivariate Testsa Effect Value F Hypothesis df Error df Sig. Partial Eta Squared factor1 Pillai's Trace .019 .305b 1.000 16.000 .588 .019 Wilks' Lambda .981 .305b 1.000 16.000 .588 .019 Hotelling's Trace .019 .305b 1.000 16.000 .588 .019 Roy's Largest Root .019 .305b 1.000 16.000 .588 .019 factor1 * Participants Pillai's Trace .556 2.857b 7.000 16.000 .039 .556 Wilks' Lambda .444 2.857b 7.000 16.000 .039 .556 Hotelling's Trace 1.250 2.857b 7.000 16.000 .039 .556 Roy's Largest Root 1.250 2.857b 7.000 16.000 .039 .556 a Design: Intercept + Participants Within Subjects Design: factor1 b Exact statistic
Mauchly's Test of Sphericitya Measure: MEASURE_1 Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig. Epsilonb Greenhouse-Geisser Huynh-Feldt Lower-bound factor1 1.000 .000 0 . 1.000 1.000 1.000 Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. a Design: Intercept + Participants Within Subjects Design: factor1 b May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.
Tests of Within-Subjects Effects Measure: MEASURE_1 Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared factor1 Sphericity Assumed .051 1 .051 .305 .588 .019 Greenhouse-Geisser .051 1.000 .051 .305 .588 .019 Huynh-Feldt .051 1.000 .051 .305 .588 .019 Lower-bound .051 1.000 .051 .305 .588 .019 factor1 * Participants Sphericity Assumed 3.333 7 .476 2.857 .039 .556 Greenhouse-Geisser 3.333 7.000 .476 2.857 .039 .556 Huynh-Feldt 3.333 7.000 .476 2.857 .039 .556 Lower-bound 3.333 7.000 .476 2.857 .039 .556 Error(factor1) Sphericity Assumed 2.667 16 .167 Greenhouse-Geisser 2.667 16.000 .167 Huynh-Feldt 2.667 16.000 .167 Lower-bound 2.667 16.000 .167
Tests of Within-Subjects Contrasts Measure: MEASURE_1 Source factor1 Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared factor1 Linear .051 1 .051 .305 .588 .019 factor1 * Participants Linear 3.333 7 .476 2.857 .039 .556 Error(factor1) Linear 2.667 16 .167
Tests of Between-Subjects Effects Measure: MEASURE_1 Transformed Variable: Average Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared Intercept 67.985 1 67.985 214.689 .000 .931 Participants .933 7 .133 .421 .875 .156 Error 5.067 16 .317
Estimates Measure: MEASURE_1 factor1 Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound 1 1.565 .135 1.278 1.851 2 1.481 .121 1.224 1.738
Pairwise Comparisons Measure: MEASURE_1 (I) factor1 (J) factor1 Mean Difference (I-J) Std. Error Sig.a 95% Confidence Interval for Differencea Lower Bound Upper Bound 1 2 .083 .151 .588 -.236 .403 2 1 -.083 .151 .588 -.403 .236 Based on estimated marginal means a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).
how would i simplify the f and p value in a write up
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started