Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Discrete Structure - Gray Code 1. The text gives a recursive definition for Gray codes, G. (pp. 220,221), for which successive entries in the list

Discrete Structure - Gray Code
image text in transcribed
image text in transcribed
1. The text gives a recursive definition for Gray codes, G. (pp. 220,221), for which successive entries in the list of codes differ by only one bit. We can prove that successive entries differ in only one bit using mathematical induction. The base case, for n=1 is trivial, given the definition for Gj. For the induction step, we assume that for an arbitrary, n > 1, successive entries of the gray code, G., differ in only one bit. In order to prove that, under this assumption, successive entries of the gray code, Gn+1, differ in only one bit, we can consider three cases: - Both entries are part of (OGA) - One is the last entry in (OG), the next is the first entry in (16) - Both entries are part of (16) Using the following notation: - For i = 1, ..., 2n+1S, for the i-th entry in G+ - For j = 1, ..., n +1: S.[] for the j-th bit in the i-th entry in Gh+1 - For j, k = 1, .... n + I with j sk: Slj...k] for bits through k of the i-th entry in G.+1 along with the definition given in the text and the notation used in the text, explain: (a) Why, for i - 1. .... (2" - 1): S, and Sr+1 differ only in one bit (b) Why S and Sa+1) differ only in one bit (e) Why, for i = (24 + 1). .... 21+1, S, and S. 1 differ only in one bit V W IS LIUL LO UMIY HALUAI Ulu Ul Lue n-cube, but it is the easiest to describe. The standard way to write the Gray Code is as a column of strings, where the last string is followed by the first string to complete the circuit. Basis for the Gray Code (n = 1): The Gray Code for the 1-cube is G - CHAPTER 9. GRAPH THEORY 1. Note that the edge between 0 and 1 is used twice in this circuit. That doesn't violate any rules for Hamiltonian circuits, but can only happen if a graph has two vertices, Recursive definition of the Gray Code: Given the Gray Code for the 7-eube, 12 1. then G+ is obtained by (1) listing G with each string prefixed with 0. and then (2) reversing the list of strings in G with each string prefixed with 1. Symbolically, the recursion can be expressed as follows, where G N the reverse of list G G 16 The Gray Codes for the 2-cube and 3-cube are 010 will think of these from th Gract 1. The text gives a recursive definition for Gray codes, G. (pp. 220,221), for which successive entries in the list of codes differ by only one bit. We can prove that successive entries differ in only one bit using mathematical induction. The base case, for n=1 is trivial, given the definition for Gj. For the induction step, we assume that for an arbitrary, n > 1, successive entries of the gray code, G., differ in only one bit. In order to prove that, under this assumption, successive entries of the gray code, Gn+1, differ in only one bit, we can consider three cases: - Both entries are part of (OGA) - One is the last entry in (OG), the next is the first entry in (16) - Both entries are part of (16) Using the following notation: - For i = 1, ..., 2n+1S, for the i-th entry in G+ - For j = 1, ..., n +1: S.[] for the j-th bit in the i-th entry in Gh+1 - For j, k = 1, .... n + I with j sk: Slj...k] for bits through k of the i-th entry in G.+1 along with the definition given in the text and the notation used in the text, explain: (a) Why, for i - 1. .... (2" - 1): S, and Sr+1 differ only in one bit (b) Why S and Sa+1) differ only in one bit (e) Why, for i = (24 + 1). .... 21+1, S, and S. 1 differ only in one bit V W IS LIUL LO UMIY HALUAI Ulu Ul Lue n-cube, but it is the easiest to describe. The standard way to write the Gray Code is as a column of strings, where the last string is followed by the first string to complete the circuit. Basis for the Gray Code (n = 1): The Gray Code for the 1-cube is G - CHAPTER 9. GRAPH THEORY 1. Note that the edge between 0 and 1 is used twice in this circuit. That doesn't violate any rules for Hamiltonian circuits, but can only happen if a graph has two vertices, Recursive definition of the Gray Code: Given the Gray Code for the 7-eube, 12 1. then G+ is obtained by (1) listing G with each string prefixed with 0. and then (2) reversing the list of strings in G with each string prefixed with 1. Symbolically, the recursion can be expressed as follows, where G N the reverse of list G G 16 The Gray Codes for the 2-cube and 3-cube are 010 will think of these from th Gract

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Fundamentals Of Database Management Systems

Authors: Mark L. Gillenson

3rd Edition

978-1119907466

More Books

Students also viewed these Databases questions

Question

What are the major environmental standards?

Answered: 1 week ago

Question

b. A workshop on stress management sponsored by the company

Answered: 1 week ago