Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

do the code in python Using the attached dataset to develop, train, and evaluate a group of linear regression models to predict the price (dependent

do the code in python
Using the attached dataset to develop, train, and evaluate a group of linear regression models to predict the price (dependent variable) of a Monet painting from a few of its features (independent variables). Create your model in Python.
Tasks: 1. Create at least two simple linear regression models, each of them has one different independent variable (you may transform the raw independent variable into different formats, such as to conduct a logarithmic transformation or combine two variables into a new variable such as Size = width * height). You may consider one variable as Size, and another one as Width. Create a scatter plot for showing the relationship between the independent variable and the dependent variable for each model, and also showing the linear regression line in the same plot. Calculate the error of the prediction with test data.
2. Create a multivariate linear regression model. You may need to consider the normalization of the raw data. Calculate the error of the prediction with test data.
Dataset: monet.csv
Submit your code, test results including visualizations, and report.
PRICE,HEIGHT,WIDTH,SIGNED,PICTURE,HOUSE
3.9937800,21.3000000,25.6000000,1,1,1
8.8000000,31.9000000,25.6000000,1,2,2
.1316940,6.9000000,15.9000000,0,3,3
2.0375000,25.7000000,32,1,4,2
1.4875000,25.7000000,32,1,4,2
1.8700000,25.6000000,31.9000000,1,4,1
5.2825000,25.5000000,35.6000000,1,5,1
5.0657500,26,34.3000000,1,5,2
1.3750000,25.6000000,36.2000000,1,5,2
2.5300000,25.6000000,36.4000000,1,6,2
3.7425000,25.6000000,36.4000000,1,6,2
.3643430,25.6000000,36.2000000,1,7,2
2.7238700,31.9000000,39.4000000,1,8,2
3.5200000,23.6000000,31.9000000,1,9,1
.4975000,19.5000000,25,1,10,2
9.3500000,32.7000000,26.8000000,1,11,1
1.2195000,25.5000000,36,1,12,2
.4070000,25.6000000,39.4000000,1,12,2
3.7133900,25.6000000,36.2000000,1,13,3
5.2964060,25.8000000,21.5000000,1,14,2
2.8620000,21.4000000,28.9000000,1,15,2
4.1800000,26,32.5000000,1,16,1
2.4807500,26,32.5000000,1,16,2
.2370680,50,14.6000000,0,17,2
.5274460,22.7000000,28.1000000,1,18,1
33.0135040,35,39.4000000,1,19,2
.0355490,37.4000000,39.4000000,0,20,3
.4950000,32.1000000,23.5000000,1,21,1
1.0780000,32.1000000,23.5000000,1,21,1
.4315000,25.7000000,36.4000000,0,22,2
3.4800000,25.7000000,36.5000000,1,23,2
.4645000,21.5000000,25.9000000,1,24,1
1.6500000,25.6000000,31.9000000,1,25,1
4.4880000,28.7000000,36.2000000,1,26,2
.1565000,23.7000000,23.7000000,0,27,2
.1913460,23.6000000,23.6000000,0,27,2
1.2160000,29.3000000,29.3000000,1,28,1
.7975000,32,32.6000000,1,29,2
1.2100000,25.7000000,32,1,30,1
.6995160,21.3000000,25.6000000,1,31,2
.7625090,25.6000000,31.9000000,1,32,2
.7604860,23.9000000,31.5000000,1,33,1
.8825000,23.6000000,28.7000000,1,34,1
3.7400000,32.3000000,23.6000000,1,35,2
.2190050,19.7000000,22.4000000,0,36,2
1.3906200,23.6000000,31.5000000,1,37,2
2.8695000,23.6000000,28,1,38,1
1.8725000,21.3000000,25.8000000,1,39,2
.7150000,21.3000000,25.8000000,1,39,1
2.3157500,18.1000000,15,1,40,2
5.9791900,51.6000000,38.2000000,0,41,1
1.1333110,21.7000000,25.6000000,1,42,1
9.0225000,24.4000000,31.5000000,1,43,1
.9960000,27.2000000,36.5000000,1,44,1
.7627740,27.2000000,36.5000000,1,44,1
.9960000,36.3000000,28.9000000,1,45,1
3.5591110,26,36.5000000,1,46,1
.9925000,25.7000000,31.7000000,0,47,1
3.5225000,25.6000000,31.9000000,1,48,1
.3300000,25.8000000,32.1000000,0,49,2
3.9625000,25.5000000,31.7000000,1,50,1
4.0003700,28.7000000,39.4000000,1,51,1
.7700000,26,31.9000000,1,52,2
1.0620260,23.6000000,31.9000000,1,53,1
.2750000,22.9000000,30.7000000,1,54,1
.7920000,23.6000000,29.1000000,1,55,2
.1210000,31.9000000,23.4000000,1,56,1
1.4036010,51.2000000,35,1,57,1
2.0375000,21.1000000,24.2000000,1,58,1
3.5027840,21.1000000,24.2000000,1,58,1
1.0941110,25.6000000,39.4000000,0,59,2
.2665000,46.6000000,14.5000000,0,60,2
.6050000,46.7000000,14.6000000,0,60,2
.7757500,23.5000000,32,1,61,2
.7362010,23,32,1,61,2
6.1000000,51.8000000,34.8000000,1,62,1
2.2475000,21.3000000,31.9000000,1,63,1
1.8725000,21.3000000,31.9000000,1,63,1
.8250000,21.3000000,28.7000000,1,64,1
.7975000,24,19.7000000,1,65,2
.6646570,50.6000000,14.6000000,1,66,2
2.6183500,46.9000000,14.4000000,1,66,3
.5940000,47.5000000,14.9000000,1,66,2
.2765800,50.6000000,14.6000000,1,66,2
15.4025000,23.7000000,32.2000000,1,67,2
25.4177000,23.6000000,32.3000000,1,67,2
.3235080,23.7000000,29.4000000,0,68,3
.1650000,23.6000000,28.7000000,0,68,1
.7210000,28.7000000,36.2000000,1,69,1
1.0450000,18.9000000,29.9000000,1,70,1
1.1550000,23.6000000,31.9000000,1,71,2
.4600000,23.5000000,32,1,72,2
2.8657500,25.5000000,32,1,73,2
.7705770,28.7000000,36.4000000,1,74,2
1.7892300,23.2000000,31.5000000,1,75,3
.7725000,23.6000000,31.9000000,1,76,2
.1100000,23.6000000,28.7000000,0,77,1
1.5425000,24,29.1000000,1,78,1
2.2000000,24.1000000,29.4000000,1,78,1
.7700000,25.8000000,36.2000000,1,79,1
3.3000000,25.6000000,36.2000000,1,80,2
2.4225000,25.6000000,31.9000000,1,81,2
.1314800,25.6000000,31.9000000,1,82,2
.0589010,11.2000000,19.7000000,0,83,3
1.0450000,23.6000000,29,1,84,1
.2090000,23.8000000,31.9000000,1,85,2
.0505450,11,11,0,86,1
.0521720,18.3000000,29,0,87,1
.0326580,11.7000000,27.5000000,0,88,3
1.7600000,35,27,1,89,2
.5985370,21.3000000,25.6000000,0,90,2
1.4300000,25.6000000,39.4000000,1,91,1
.6845000,23.6000000,29.1000000,1,92,2
.7000000,21.7000000,31.9000000,1,93,1
1.6560000,24,31.1000000,1,94,1
.5305000,23.5000000,29,1,95,1
3.1146800,25.2000000,39,1,96,2
.3435000,15.5000000,18.9000000,1,97,2
1.6829900,28.7000000,39.4000000,1,98,1
2.1280000,23.6000000,29.5000000,1,99,2
4.7300000,23.6000000,29.5000000,1,100,1
3.0895000,32.6000000,24.5000000,1,101,2
11,21.3000000,29.1000000,1,102,2
1.0475000,21.9000000,28.7000000,1,103,2
.4910710,23.6000000,39.4000000,1,104,2
.5759200,15.9000000,21.3000000,1,105,2
2.3358050,25.6000000,36.2000000,1,106,1
.7175000,25.5000000,36.3000000,1,107,2
1.8150000,25.9000000,32.9000000,1,108,2
.7222720,23.9000000,32,1,109,1
.4975000,23.7000000,32,1,109,1
.2844820,23.6000000,31.9000000,0,110,2
1.4591800,23.6000000,39.4000000,1,111,2
.4860480,31.9000000,23.6000000,1,112,1
2.2625230,47.2000000,39.4000000,0,113,2
1.6560000,47.5000000,39.5000000,0,113,1
.8525000,78.7000000,39.8000000,0,114,2
1.0805000,39.8000000,39.8000000,1,115,1
.6075000,39.8000000,39.8000000,0,115,2
3.5000000,78.7000000,39.5000000,0,116,1
6.6000000,23.8000000,28.9000000,1,117,2
.6325000,21.7000000,29.1000000,1,118,2
5.0180900,24,31.5000000,1,119,2
.6325000,21.5000000,28.9000000,1,120,2
.4728540,23.6000000,28.9000000,1,121,1
1.2248600,41.7000000,28.5000000,1,122,2
12.1893000,41.7000000,28.7000000,1,122,1
.3405860,20.5000000,26.8000000,1,123,3
.6075000,25.8000000,31.9000000,1,124,1
1.0510000,26.1000000,32.2000000,1,125,1
1.2125000,26.3000000,32.1000000,1,125,1
2.2025000,24,39.3000000,1,126,2
1.1645580,23.2000000,31.5000000,1,127,2
.3280670,24,29.1000000,1,128,2
.9080000,25.6000000,39.4000000,1,129,1
2.4257500,25.5000000,31.9000000,1,130,2
1.4875000,25.6000000,31.9000000,1,130,1
9.6825000,57.9000000,89,1,131,1
1.2760500,19.7000000,24,1,132,2
.2885000,21,28.7000000,0,133,2
.3595470,28.7000000,35.8000000,1,134,2
.4059680,24.5000000,32,1,135,1
.8695000,27.9000000,36.5000000,0,136,1
.8050070,36.3000000,28.9000000,0,137,1
4.7115000,28.7000000,36.2000000,1,138,1
1.5425000,25.6000000,36.2000000,1,139,1
.2530000,25.6000000,31.7000000,0,140,1
.5800000,28.7000000,36.2000000,0,141,1
6.6025000,25.6000000,36.3000000,1,142,3
.3238600,23.2000000,31.5000000,1,143,2
16.5665470,18.7000000,29.1000000,1,144,2
10.7800000,18.7000000,29.1000000,1,144,1
1.1862500,28.7000000,36.2000000,1,145,2
.9849480,28.7000000,23.6000000,1,146,2
3.8500000,29,36.5000000,1,147,1
.7902290,29,36.5000000,1,147,2
2.3261290,29,36.5000000,1,147,2
.2860000,25.6000000,36.2000000,0,148,2
5.1375450,20.9000000,28.7000000,1,149,1
4.6300800,20.9000000,28.7000000,1,149,2
.7876600,25.6000000,31.5000000,1,150,1
.6075000,23.6000000,37.9000000,1,151,2
.4442730,23.6000000,31.9000000,0,152,3
.2539400,23.6000000,31.9000000,1,152,2
3.3680000,26.8000000,35.4000000,1,153,2
.3850000,25.6000000,31.9000000,1,154,2
2.9195000,23.6000000,28.7000000,1,155,1
.3733930,11.6000000,23.3000000,0,156,1
7.6000000,23.5000000,31.4000000,1,157,1
2.6400000,21.7000000,26,1,158,2
.5500000,23.6000000,39.4000000,1,159,1
.3048580,15.7000000,28.7000000,1,160,2
.8000000,19.8000000,25.5000000,1,161,2
.3991660,17.7000000,23.6000000,0,162,3
.5350740,22,29.3000000,1,163,2
.8480000,22.1000000,28.9000000,1,163,2
.7725000,19.8000000,32.6000000,0,164,2
.4400000,23.8000000,39.6000000,1,165,1
1.2125000,26,39.6000000,1,166,2
.3520000,18.9000000,24.8000000,1,167,1
1.6525000,25.5000000,32,1,168,2
.3875000,19.5000000,32,1,168,1
2.3595000,25.7000000,31.9000000,1,169,1
.1210000,21.3000000,32.1000000,0,170,1
.6386860,21.3000000,32.1000000,0,170,1
2.2025000,25.6000000,36.2000000,1,171,1
.5745000,19.5000000,32,1,172,1
1.9857000,28.7000000,39.4000000,1,173,2
.3300000,23.6000000,31.9000000,1,174,2
1.4325000,25.5000000,36.4000000,1,175,2
.2718000,26,15,1,176,2
.3325000,26,15,1,176,1
1.4635000,28.9000000,36.3000000,1,177,1
.8393970,28.7000000,21.7000000,1,178,2
.3300000,35,39.4000000,0,179,2
.7260000,20,26,1,180,1
7.7289350,39.4000000,78.7000000,0,181,2
16.8080000,39.4000000,78.7000000,0,181,2
6.8260000,39.8000000,79,0,181,1
9.9025000,38.4000000,78.1000000,0,181,2
12.1000000,39.4000000,78.7000000,1,182,1
3.8500000,38.6000000,51.4000000,0,183,1
8.9979600,39.4000000,78.7000000,0,184,2
.8664510,21.3000000,29.1000000,1,185,2
.5451000,22.2000000,29.1000000,1,186,1
.5525000,20,24.1000000,1,187,2
1.3303680,25.6000000,31.9000000,1,188,1
2.8276000,17.5000000,28.3000000,1,189,1
.6900000,15.7000000,31,1,190,2
.2995000,23.6000000,31.6000000,0,191,1
.2050750,21.7000000,25.6000000,1,192,3
.2451830,25,35.8000000,1,193,2
12.1025000,32,36.4000000,1,194,2
9.9000000,32,36.4000000,1,194,2
11.5500000,28.7000000,36.2000000,1,195,2
.6735000,23.5000000,31.5000000,1,196,1
.8475000,23.8000000,28.7000000,1,197,1
13.2025000,39.6000000,32.3000000,1,198,1
2.7525000,23.6000000,28.7000000,1,199,1
5.8300000,35,36.2000000,1,200,2
.6820000,25.6000000,39.4000000,1,201,2
1.2675000,25.6000000,39.4000000,1,202,1
1.0145000,28.3000000,36,1,203,1
4.2375000,28.7000000,36.2000000,1,204,1
4.1825000,25,35.4000000,1,205,1
2,32,26,1,206,2
2.5287400,31.9000000,26,1,207,2
3.0800000,25.6000000,36.2000000,1,208,1
14.3000000,32.3000000,36.5000000,1,209,1
14.5807500,32.1000000,36.6000000,1,210,2
9.9000000,31.9000000,36.2000000,1,210,1
.6600000,20.3000000,25.8000000,1,211,1
.8850070,23.6000000,31.9000000,1,212,1
12.4453000,22.9000000,38.3000000,1,213,1
1.9741810,28.9000000,41.9000000,1,214,1
4.3115780,31.5000000,36.2000000,0,215,1
6.8750000,35,45.5000000,1,216,2
11.0401000,35.2000000,36.4000000,1,217,1
.6195390,19.7000000,25.6000000,1,218,2
4.9541900,21.3000000,28.7000000,1,219,2
2.0900000,23.6000000,32,1,220,1
24.2057500,39.4000000,25.7000000,1,221,2
1.9120000,23.9000000,32.1000000,1,222,2
.8250000,29.1000000,36.5000000,1,223,2
.8860000,14,28.7000000,1,224,1
.5531600,14,28.7000000,1,224,2
.4205000,31.5000000,25.3000000,0,225,1
1.3312600,31.5000000,25.2000000,1,226,2
2.1415800,31.5000000,25.2000000,1,226,3
1.3334600,26.4000000,32.3000000,1,227,2
1.1146600,21.7000000,29.1000000,1,228,2
.7088950,25.7000000,32,1,229,1
3.0250000,24,39.5000000,1,230,2
2.8527000,15,20.7000000,1,231,2
.5610000,21.3000000,31.1000000,1,232,2
1.1888790,19.7000000,31.9000000,1,233,1
.9602110,28.7000000,36.2000000,1,234,3
2.0900000,25.6000000,39.6000000,1,235,1
7.1525000,25.6000000,36.3000000,1,236,2
6.7100000,25.6000000,36.2000000,1,237,2
7.0460000,45.9000000,28.6000000,0,238,1
8.2500000,36.3000000,28.7000000,1,239,1
11.0025000,36.2000000,29.1000000,1,240,2
1.1707300,24.4000000,19.7000000,1,241,1
20.1675000,31.9000000,36.2000000,1,242,1
.8275000,28.7000000,36.3000000,0,243,1
.8172550,23.6000000,31.9000000,1,244,2
.8195770,19.7000000,28.7000000,1,245,1
.6304980,19.7000000,28.7000000,1,245,2
2.7557500,51.5000000,35.1000000,1,246,2
2.3595000,51.5000000,35,1,246,1
2.4200000,51.2000000,35,1,246,2
4.6200000,28.9000000,36.2000000,1,247,1
3.3000000,25.6000000,36.2000000,1,248,1
5.7257500,35.4000000,36.5000000,1,249,2
1.5791500,28,35.4000000,1,250,2
4.9359150,35.2000000,36.1000000,1,251,1
.2190050,18.1000000,21.7000000,1,252,2
11.9925000,28.7000000,36.2000000,1,253,2
.2143060,4.6000000,7.5000000,1,254,2
.1125370,3.9000000,6.7000000,1,255,2
2.2000000,23.6000000,39.6000000,1,256,1
2.5300000,28.7000000,36.4000000,1,257,1
14.3230050,28.7000000,36.2000000,1,258,2
8.5250000,25.6000000,39.4000000,1,259,2
1.7625000,25.5000000,32.2000000,1,260,2
.3325000,25.5000000,39.5000000,0,261,1
.9410000,25.8000000,39.6000000,1,262,1
.7700000,25.8000000,32.1000000,1,263,1
1.6594800,18.1000000,29,1,264,2
3.0310000,19,29,1,265,1
1.6500000,18,22,1,266,2
.4425000,21.9000000,29,1,267,2
2.3150400,34.1000000,35.4000000,0,268,1
20.0619790,31.9000000,36.6000000,1,269,2
7.1557500,36.3000000,28.7000000,1,270,2
8.3657500,39.4000000,32,1,271,2
4.9029430,39.4000000,39.4000000,1,272,2
5.0625000,39.4000000,39.4000000,1,272,2
5.0625000,39.4000000,32,1,272,1
5.7775000,53.1000000,57.1000000,0,273,2
13.2025000,35,39.8000000,1,274,1
3.3025000,31.3000000,31.3000000,1,275,1
.0702260,10.6000000,20.5000000,0,276,2
.2336000,10.6000000,20.5000000,0,276,2
.0990000,10.6000000,20.5000000,0,276,1
.0104130,9.4000000,9.4000000,0,277,3
.1980000,26.9000000,21.4000000,0,278,2
.4624040,28.7000000,21.5000000,0,279,3
9.4600000,42,28.7000000,1,280,2
8.8000000,35.5000000,28.5000000,1,281,2
5.7200000,51.6000000,37.4000000,1,282,1
.0177680,8.3000000,19.7000000,0,283,3
7.7000000,78.7000000,78.7000000,1,284,2
7.4817200,39.4000000,39.4000000,1,285,2
3.3000000,51.2000000,59.1000000,1,286,1
.0535070,23.1000000,21.3000000,1,287,2
7.6884830,59.1000000,78.7000000,0,288,2
.1196580,14.2000000,24.8000000,0,289,3
10.4240000,36.2000000,35,1,290,2
4.1515000,66.5000000,48.5000000,0,291,1
18.7095000,35,36.3000000,1,292,2
9.9060000,78.7000000,70.9000000,0,293,1
20.9060000,35.4000000,39.4000000,1,294,1
22.5525000,35.2000000,36.5000000,1,295,1
.0297560,8.3000000,24,0,296,3
11.5500000,39.5000000,39.5000000,1,297,1
10.3548150,36.2000000,35,1,298,2
.0280220,19.5000000,10,0,299,3
4.4000000,51.3000000,77.8000000,0,300,1
.9075000,47,14.6000000,1,301,2
.3300000,25.6000000,36.4000000,1,302,1
.8250000,25.5000000,32,1,303,2
5.9425000,28.7000000,23.5000000,1,304,2
.4180000,28.9000000,31.5000000,1,305,2
6.1724200,36.2000000,28.7000000,1,306,2
6.6301570,36.6000000,29.3000000,1,307,1
4.0395000,36.4000000,25.6000000,1,308,1
.3477010,19.9000000,14.8000000,1,309,2
.6710000,24,20.1000000,1,310,2
.3985000,24,18.6000000,1,311,2
2.1507300,25.8000000,36.6000000,1,312,2
.8250000,25.8000000,36.6000000,1,312,1
7.4726000,39.4000000,25.6000000,1,313,2
4.8212980,28.7000000,36.2000000,1,314,1
.7150000,32.1000000,25.6000000,1,315,1
.8825000,23.6000000,39.4000000,1,316,1
.5795640,21.5000000,28.9000000,1,317,1
.4400000,24,32.5000000,1,318,1
1.6557500,25.5000000,31.8000000,0,319,2
5.9425000,36.2000000,35,1,320,1
2.8600000,35,36.2000000,1,321,2
.4407180,18.3000000,15,1,322,2
.3520000,16.1000000,13.4000000,1,323,2
.2310000,15.9000000,13,1,324,2
.7175000,22.1000000,14.9000000,1,325,1
.3985000,17.8000000,15,1,326,2
1.7995000,23.2000000,27.5000000,1,327,1
4.2002110,28.7000000,36.2000000,1,328,1
.2530000,25.6000000,31.9000000,0,329,1
1.6500000,23.2000000,31.7000000,1,330,1
.7175000,25.5000000,36.3000000,1,331,1
1.7600000,35.4000000,36.2000000,1,332,1
1.2911600,35.4000000,36.2000000,1,333,2
1.4300000,25.5000000,32,1,334,1
1.0475000,44.1000000,34,0,336,1
1.4300000,40.2000000,29.5000000,0,337,2
.5390000,31.9000000,25.6000000,1,338,2
3.1146800,25.8000000,32.1000000,1,339,2
.3105000,16.7000000,23.3000000,1,340,1
.5165160,18.9000000,29.1000000,1,341,2
.9792280,18.9000000,29.1000000,1,341,2
6.6000000,25.5000000,36.2000000,1,342,2
2.5000000,23.6000000,28.7000000,1,343,3
.1985700,19.7000000,24,0,344,2
11.4096000,28.3000000,35.8000000,1,345,2
1.3255640,28.7000000,36.2000000,1,346,2
1.7625000,19.7000000,25.6000000,1,347,1
.6145000,24.4000000,29.5000000,1,348,2
1.1575170,28.7000000,21.3000000,1,349,2
.3991660,22,18.1000000,0,350,3
.8475000,25.7000000,39.4000000,1,351,1
6.9024400,19.7000000,27.6000000,1,352,1
1.0510000,23.7000000,29,1,353,1
.1826360,14.5000000,11.6000000,0,354,1
1.3000000,23.6000000,32.1000000,1,355,1
4.5100000,25.6000000,31.9000000,1,356,2
.6795000,29,36.5000000,1,357,1
.8418660,23.6000000,28.7000000,1,358,2
.2060150,28.7000000,28.7000000,0,359,3
1.4325000,39.5000000,32,1,360,2
.7920000,19.8000000,14.8000000,1,361,2
7.5396580,23.6000000,39.4000000,1,362,1
4.9992730,35.4000000,36.5000000,1,363,2
2.2025000,28.9000000,37,1,364,2
4.0760000,23.8000000,31.3000000,1,365,1
1.1060000,17.2000000,25.9000000,1,366,1
.3745980,7.1000000,15.1000000,1,367,1
.6625000,20.5000000,25.2000000,1,368,1
3.7425000,25.5000000,31.5000000,1,369,2
.5445540,21.3000000,28.7000000,1,370,2
4.5125000,21.3000000,28.9000000,1,371,2
5.5025000,55.1000000,59.1000000,0,372,1
1.8700000,24,31.9000000,1,373,2
3.8500000,25.6000000,39.4000000,1,374,1
5.2825000,25.6000000,39.4000000,1,375,1
9.3525000,25.9000000,39.6000000,1,375,2
8.2525000,25.6000000,39.6000000,1,375,1
3.4100000,25.6000000,39.4000000,1,386,2
1.5425000,25.7000000,32,1,387,1

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Optimizing Data Collection In Warzones

Authors: Aaget Aamber

1st Edition

B0CQRRFP5F, 979-8869065902

More Books

Students also viewed these Databases questions

Question

Identify five strategies to prevent workplace bullying.

Answered: 1 week ago