Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

EN PITN El documento tree.csv contiene mediciones realizadas en una multitud considerable de rboles a ambos lados de una carretera nacional, que tuvieron que ser

EN PITN

El documento tree.csv contiene mediciones realizadas en una multitud considerable de rboles a ambos lados de una carretera nacional, que tuvieron que ser talados para una ampliacin (actualmente en construccin). El archivo registra el nombre, dimetro, altura y otros datos. importacin y revisin de datos

En primer lugar, es til realizar la importacin y una revisin rpida de los datos, para observar su estructura.

CDIGO:

importar pandas como pd

# Importar CSV a un marco de datos rboles = pd.read_csv('rboles.csv')

# Mostrar los primeros datos rboles.cabeza()

Tambin es posible realizar una descripcin estadstica bsica con el nmero total de rboles, la media de cada columna, la desviacin estndar, el valor mnimo, el primer, segundo y tercer cuartil y el valor mximo.

# Breve descripcin estadstica rboles.describe()

asignaciones

Para cada una de las tareas se te presenta un cdigo a modo de ayuda, pero puedes modificarlos

1. Determine la cantidad de especies diferentes de rboles y enumrelas en orden alfabtico.

importar numpy como np especie = rboles['nombre comn'] especie2 = especie.drop_duplicates() print('Las diferentes especies de rboles son:') especie2

2. Traza el histograma de la distribucin de dimetro de 10 rboles diferentes de tu eleccin, en 10 grficos diferentes . Determine tambin los parmetros del modelo de mejor ajuste para la seleccin de dos rboles dados por asignaciones(). Trazar las curvas junto con los histogramas para cada caso, en el mismo grfico.

importar matplotlib.pyplot como plt de las estadsticas de importacin de scipy

asignaciones def (dgitos): '''Funcin que asigna un rbol y un combinacin de dos rboles para cada persona basado en los dgitos de su tarjeta. ''' semilla.aleatoria(dgitos) lista = rboles['Nombre comn'].nico() retorno (eleccin.aleatoria(lista), opciones.aleatorias(lista, k=2))

dgitos = 76543 my_trees = asignaciones (dgitos) print('Mis dos rboles son: {} y {}.'.format(mis_rboles[1][0], mis_rboles[1][1])) print('Mi rbol es: {}.'.format(my_trees[0])) Mis dos arboles son: almendro de montana y cortez de chivo. Mi rbol es: cenizaro.

dimetro = rboles['Dimetro (cm)']

# Crear histograma de medidas plt.hist(dimetro, 20)

# Agregar informacin al grfico. plt.title('Histograma de un conjunto de medidas') plt.xlabel('Medidas (cm)') plt.ylabel('Nmero de apariciones') plt.mostrar()

pd.option_context('mode.use_inf_as_null', Verdadero) dimetro2= dimetro.dropna()

# Encuentra parmetros de ajuste Rp1, Rp2 = estadsticas.rayleigh.fit(dimetro2) Arriba1, Arriba2 = estadsticas.uniforme.fit(dimetro2) Np1, Np2 = estadsticas.norm.fit(dimetro2) Ep1, Ep2 = estadsticas.expon.fit(dimetro2) ############################

# Crear distribuciones con los parmetros encontrados. R = estadsticas.rayleigh(Rp1, Rp2) U = estadsticas.uniforme(Arriba1, Arriba2) N = estadsticas.norm(Np1, Np2) E = estadsticas.expon(Ep1, Ep2)

# Crear histograma como frecuencia relativa plt.hist(dimetro2, 20, densidad=Verdadero)

# Soporte de grficos m = np.linspace(mn(dimetro2), mx(dimetro2), 60)

# Trazar curvas de ajuste plt.plot(m, U.pdf(m), etiqueta="Uniforme") plt.plot(m, R.pdf(m), etiqueta="Rayleigh") plt.plot(m, N.pdf(m), etiqueta="Normal") plt.plot(m, E.pdf(m), etiqueta="Exponencial")

# Agregar informacin al grfico plt.title('Histograma y ajuste de curvas') plt.xlabel('Medidas m') plt.ylabel('Ocurrencias') plt.leyenda() plt.mostrar()

3. Determinar qu especies de rboles tienen el valor comercial promedio ms alto.

rboles.groupby('Nombre comn').mean()

MaxComValue = max(trees['Valor comercial aproximado (CRC)']) i = rboles.index[rboles['Valor comercial aproximado (CRC)'] == ValueComMax].tolist() print("El rbol con el valor comercial promedio ms alto es: {}".format(trees.iloc[i[0], 1]))

rboles.csv

Secuencia,Nombre comn,Dimetro (cm),Altura total (m),Altura comercial (m),Volumen comercial (m3),Valor comercial aproximado (CRC)

I0001,roble sabana,64.6,12,6,1,31323.29 I0002,roble sabana,56,10,4,0,15692.32 I0003,jocote,32,4,2,0,0 I0004,cenzaro,72.4,13,4,1,54545.22 I0005,guayaquil,55.3,11,6,1,19301.97 I0006,mora,58.2,12,6,1,26002.09 I0007,roble sabana,34.5,9,5,0,7444.91 I0008,gucimo,72.1,6,4,1,16257.80 I0009,almendro de playa,27.6,3,3,0,0 I0010,almendro de playa,24.4,3,3,0,0 I0011,almendro de playa,22,3,3,0,0 I0012,cenzaro,59.2,9,3,0,27351.69 I0013,cedro amargo,26.2,8,3,0,7055.20 I0014,gucimo,42.5,8,3,0,4236.72 I0015,gucimo,37.2,2.5,2.5,0,2704.94 I0016,guanacaste,204,20,5,8.1713,597516.86 I0017,guanacaste,177.5,15,8,9.898,723779.92 I0018,cenzaro,129.7,16,7,4.6242,306335.65 I0019,cenzaro,83.5,16,4,1.0952,72552.52 I0020,guanacaste,166.2,20,8,8.6778,634558.77 I0021,guanacaste,173,10,8,9.4025,687546.41 I0022,cenzaro,135.1,17,7,5.0173,332374.95 I0023,cedro amargo,44.7,15,6,0,41072.56 I0024,gucimo,22.7,8,4,0,1611.55 I0025,cedro amargo,110.2,16,6,2.8614,249631.82 I0026,tabaquillo,17.4,6,,0,0 I0027,guanacaste blanco,28.5,15,5,0,11662.17 I0028,tabaquillo,16.1,11,,0,0 I0029,tabaquillo,16.6,10,,0,0 I0030,gucimo,43.8,12,3,0,4499.88

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Essentials of Database Management

Authors: Jeffrey A. Hoffer, Heikki Topi, Ramesh Venkataraman

1st edition

133405680, 9780133547702 , 978-0133405682

More Books

Students also viewed these Databases questions

Question

Find the derivative of y= cos cos (x + 2x)

Answered: 1 week ago

Question

2. Discuss the steps in preparing a manager to go overseas.

Answered: 1 week ago