Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Exercise 1: Correlation and Linear Regression For the following exercise, characterize the relationship of the variables and interpret the F-test for the regression model. Using

Exercise 1: Correlation and Linear Regression

For the following exercise, characterize the relationship of the variables and interpret the F-test for the regression model. Using the p-value approach, determine whether the null hypothesis for the F-test is rejected or not. Discuss why or why not. Interpret the implication of these findings for the model.

  • (a) Can you determine any correlation between the independent variables Days (number of days the property is on the market) and the Price (market price in dollars)? Similarly, are the Size (livable square feet of the property) and the Price(market price in dollars) correlated? Use the .05 significance level. State the p-value of the test.
  • (b) With thePrice (market price in dollars) as the dependent variable and the Size (livable square feet of the property)of the home as the independent variable, determine the regression equation and interpret the confidence level, the precision, and reliability of the sample. Using the regression model, forecast the future market Price for a home with a livable area of 2,200 square feet. Determine the 95% prediction interval for the market price of a home with a livable area of 2,200 square feet.

Exercise 2: Multiple Regression Analysis

Conduct the following analyses using the Price (market price in dollars) as the dependent variable, determine the regression equation with the Bedrooms (number of bedrooms), Size (livable square feet of the property), Township (area the property is located), and theBaths (number of bathrooms) as independent variables.

  • (a) Develop a correlation matrix and discuss which independent variables have strong or weak correlations with the dependent variable. Utilize these results to discuss any issues with problems with the multicollinearity.
  • (b) Use Excel to determine the multiple regression equation. Discuss how you selected the variables to include in the equation. Your regression equation should demonstrate a significant relationship. Report and interpret the R-square.
  • (c) Using your results fromQuestion (b) evaluate the addition of the variables; Pool (1 = yes, 0 = no), and attached Garage (1 = yes, 0 = no). Report your results and conclusions.
  • (d) Develop a histogram of the residuals from the final regression equation developed inQuestion (c). Is it reasonable to conclude that the normality assumption has been met?
  • (e) Plot the residuals against the fitted values from the final regression equation developed inQuestion (c). Plot the residuals on the vertical axis and the fitted values on the horizontal axis.
  • EXCEL DATA:
SYM-506 North Valley Real Estate Case Study Data Set
record Agent Price Size Bedrooms Baths Pool (yes is 1) Garage (Yes is 1) Days Township Mortgage type Years FICO Default (Yes is 1)
1 Marty 206424 1820 2 1.5 1 1 33 2 Fixed 2 824 0
2 Rose 346150 3010 3 2 0 0 36 4 Fixed 9 820 0
3 Carter 372360 3210 4 3 0 1 21 2 Fixed 18 819 0
4 Peterson 310622 3330 3 2.5 1 0 26 3 Fixed 17 817 0
5 Carter 496100 4510 6 4.5 0 1 13 4 Fixed 17 816 0
6 Peterson 294086 3440 4 3 1 1 31 4 Fixed 19 813 0
7 Carter 228810 2630 4 2.5 0 1 39 4 Adjustable 10 813 0
8 Isaacs 384420 4470 5 3.5 0 1 26 2 Fixed 6 812 0
9 Peterson 416120 4040 5 3.5 0 1 26 4 Fixed 3 810 0
10 Isaacs 487494 4380 6 4 1 1 32 3 Fixed 6 808 0
11 Rose 448800 5280 6 4 0 1 35 4 Fixed 8 806 1
12 Peterson 388960 4420 4 3 0 1 50 2 Adjustable 9 805 1
13 Marty 335610 2970 3 2.5 0 1 25 3 Adjustable 9 801 1
14 Rose 276000 2300 2 1.5 0 0 34 1 Fixed 20 798 0
15 Rose 346421 2970 4 3 1 1 17 3 Adjustable 10 795 0
16 Isaacs 453913 3660 6 4 1 1 12 3 Fixed 18 792 0
17 Carter 376146 3290 5 3.5 1 1 28 2 Adjustable 9 792 1
18 Peterson 694430 5900 5 3.5 1 1 36 3 Adjustable 10 788 0
19 Rose 251269 2050 3 2 1 1 38 3 Fixed 16 786 0
20 Rose 547596 4920 6 4.5 1 1 37 5 Fixed 2 785 0
21 Marty 214910 1950 2 1.5 1 0 20 4 Fixed 6 784 0
22 Rose 188799 1950 2 1.5 1 0 52 1 Fixed 10 782 0
23 Carter 459950 4680 4 3 1 1 31 4 Fixed 8 781 0
24 Isaacs 264160 2540 3 2.5 0 1 40 1 Fixed 18 780 0
25 Carter 393557 3180 4 3 1 1 54 1 Fixed 20 776 0
26 Isaacs 478675 4660 5 3.5 1 1 26 5 Adjustable 9 773 0
27 Carter 384020 4220 5 3.5 0 1 23 4 Adjustable 9 772 1
28 Marty 313200 3600 4 3 0 1 31 3 Fixed 19 772 0
29 Isaacs 274482 2990 3 2 1 0 37 3 Fixed 5 769 0
30 Marty 167962 1920 2 1.5 1 1 31 5 Fixed 6 769 0
31 Isaacs 175823 1970 2 1.5 1 0 28 5 Adjustable 9 766 1
32 Isaacs 226498 2520 4 3 1 1 28 3 Fixed 8 763 1
33 Carter 316827 3150 4 3 1 1 22 4 Fixed 2 759 1
34 Carter 189984 1550 2 1.5 1 0 22 2 Fixed 17 758 0
35 Marty 366350 3090 3 2 1 1 23 3 Fixed 5 754 1
36 Isaacs 416160 4080 4 3 0 1 25 4 Fixed 12 753 0
37 Isaacs 308000 3500 4 3 0 1 37 2 Fixed 18 752 0
38 Rose 294357 2620 4 3 1 1 15 4 Fixed 10 751 0
39 Carter 337144 2790 4 3 1 1 19 3 Fixed 15 749 0
40 Peterson 299730 2910 3 2 0 0 31 2 Fixed 13 748 0
41 Rose 445740 4370 4 3 0 1 19 3 Fixed 5 746 0
42 Rose 410592 4200 4 3 1 1 27 1 Adjustable 9 741 1
43 Peterson 667732 5570 5 3.5 1 1 29 5 Fixed 4 740 0
44 Rose 523584 5050 6 4 1 1 19 5 Adjustable 10 739 0
45 Marty 336000 3360 3 2 0 0 32 3 Fixed 6 737 0
46 Marty 202598 2270 3 2 1 0 28 1 Fixed 10 737 0
47 Marty 326695 2830 3 2.5 1 0 30 4 Fixed 8 736 0
48 Rose 321320 2770 3 2 0 1 23 4 Fixed 6 736 0
49 Isaacs 246820 2870 4 3 0 1 27 5 Fixed 13 735 0
50 Isaacs 546084 5910 6 4 1 1 35 5 Adjustable 10 731 0
51 Isaacs 793084 6800 8 5.5 1 1 27 4 Fixed 6 729 0
52 Isaacs 174528 1600 2 1.5 1 0 39 2 Fixed 15 728 0
53 Peterson 392554 3970 4 3 1 1 30 4 Fixed 17 726 0
54 Peterson 263160 3060 3 2 0 1 26 3 Fixed 10 726 0
55 Rose 237120 1900 2 1.5 1 0 14 3 Fixed 18 723 0
56 Carter 225750 2150 2 1.5 1 1 27 2 Fixed 15 715 0
57 Isaacs 848420 7190 6 4 0 1 49 1 Fixed 5 710 0
58 Carter 371956 3110 5 3.5 1 1 29 5 Fixed 8 710 0
59 Carter 404538 3290 5 3.5 1 1 24 2 Fixed 14 707 0
60 Rose 250090 2810 4 3 0 1 18 5 Fixed 11 704 0
61 Peterson 369978 3830 4 2.5 1 1 27 4 Fixed 10 703 0
62 Peterson 209292 1630 2 1.5 1 0 18 3 Fixed 10 701 0
63 Isaacs 190032 1850 2 1.5 1 1 30 4 Adjustable 2 675 0
64 Isaacs 216720 2520 3 2.5 0 0 2 4 Adjustable 5 674 1
65 Marty 323417 3220 4 3 1 1 22 4 Adjustable 2 673 0
66 Isaacs 316210 3070 3 2 0 0 30 1 Adjustable 1 673 0
67 Peterson 226054 2090 2 1.5 1 1 28 1 Adjustable 6 670 0
68 Marty 183920 2090 3 2 0 0 30 2 Adjustable 8 669 1
69 Rose 248400 2300 3 2.5 1 1 50 2 Adjustable 4 667 0
70 Isaacs 466560 5760 5 3.5 0 1 42 4 Adjustable 3 665 0
71 Rose 667212 6110 6 4 1 1 21 3 Adjustable 8 662 1
72 Peterson 362710 4370 4 2.5 0 1 24 1 Adjustable 2 656 0
73 Rose 265440 3160 5 3.5 1 1 22 5 Adjustable 3 653 0
74 Rose 706596 6600 7 5 1 1 40 3 Adjustable 7 652 1
75 Marty 293700 3300 3 2 0 0 14 4 Adjustable 7 647 1
76 Marty 199448 2330 2 1.5 1 1 25 3 Adjustable 5 644 1
77 Carter 369533 4230 4 3 1 1 32 2 Adjustable 2 642 0
78 Marty 230121 2030 2 1.5 1 0 21 2 Adjustable 3 639 0
79 Marty 169000 1690 2 1.5 0 0 20 1 Adjustable 7 639 1
80 Peterson 190291 2040 2 1.5 1 1 31 4 Adjustable 6 631 1
81 Rose 393584 4660 4 3 1 1 34 3 Adjustable 7 630 1
82 Marty 363792 2860 3 2.5 1 1 48 5 Adjustable 3 626 0
83 Carter 360960 3840 6 4.5 0 1 32 2 Adjustable 5 626 1
84 Carter 310877 3180 3 2 1 1 40 1 Adjustable 6 624 1
85 Peterson 919480 7670 8 5.5 1 1 30 4 Adjustable 1 623 0
86 Carter 392904 3400 3 2 1 0 40 2 Adjustable 8 618 1
87 Carter 200928 1840 2 1.5 1 1 36 4 Adjustable 3 618 1
88 Carter 537900 4890 6 4 0 1 23 1 Adjustable 7 614 0
89 Rose 258120 2390 3 2.5 0 1 23 1 Adjustable 6 614 1
90 Carter 558342 6160 6 4 1 1 24 3 Adjustable 7 613 0
91 Marty 302720 3440 4 2.5 0 1 38 3 Adjustable 3 609 1
92 Isaacs 240115 2220 2 1.5 1 0 39 5 Adjustable 1 609 0
93 Carter 793656 6530 7 5 1 1 53 4 Adjustable 3 605 1
94 Peterson 218862 1930 2 1.5 1 0 58 4 Adjustable 1 604 0
95 Peterson 383081 3510 3 2 1 1 27 2 Adjustable 6 601 1
96 Marty 351520 3380 3 2 0 1 35 2 Adjustable 8 599 1
97 Peterson 841491 7030 6 4 1 1 50 4 Adjustable 8 596 1
98 Marty 336300 2850 3 2.5 0 0 28 1 Adjustable 6 595 1
99 Isaacs 312863 3750 6 4 1 1 12 4 Adjustable 2 595 0
100 Carter 275033 3060 3 2 1 1 27 3 Adjustable 3 593 0
101 Peterson 229990 2110 2 1.5 0 0 37 3 Adjustable 6 591 1
102 Isaacs 195257 2130 2 1.5 1 0 11 5 Adjustable 8 591 1
103 Marty 194238 1650 2 1.5 1 1 30 2 Adjustable 7 590 1
104 Peterson 348528 2740 4 3 1 1 27 5 Adjustable 3 584 1
105 Peterson 241920 2240 2 1.5 0 1 34 5 Adjustable 8 583 1

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Cambridge IGCSE And O Level Additional Mathematics Coursebook

Authors: Sue Pemberton

2nd Edition

1108411665, 9781108411660

More Books

Students also viewed these Mathematics questions