Exercise 11-2 Net present value LO P3 Beyer Company is considering the purchase of an asset for $250,000. It is expected to produce the following net cash flows. The cash flows occur evenly within each year. Assume that Beyer requires a 12% return on its investments PV of $1 FV of $1. PVA of $1. and FVA of $1 (Use appropriate factor(s) from the tables provided.) Year 1 $89,000 Year 2 $60,000 Year 3 $74,000 Net cash flows Year 4 $173,000 Year 5 $48,000 Total $444,000 8. Compute the net present value of this investment b. Should Beyer accept the investment? Complete this question by entering your answers in the tabs below. Required A Required B Compute the net present value of this investment. (Round your answers to the nearest whole dollar) Year Net Cash Flows Present Value of 1 at 12% Present Value of Net Cash Flows b. Should Beyer accept the investment? Complete this question by entering your answers in the tabs below. Required A Required B Compute the net present value of this investment. (Round your answers to the nearest whole dollar) Year Net Cash Flows Present Value of 1 at 12% Present Value of Net Cash Flows 1 3 4 5 Totals Amount invested Net present value TABLE B.1. Present Value of 1 p=1/(1+i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 0.9803 0.9706 0.9610 0.9515 0.9420 0.9327 0.9235 0.9143 0.9053 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8360 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 0.9804 0.9612 0.9423 0.9238 0.9057 0.8880 0.8706 0.8535 0.8368 0.8203 0.8043 0.7885 0.7730 0.7579 0.7430 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 0.5521 0.5000 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5553 0.5339 0,5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.2534 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0,3957 0.3769 0.2953 0.2314 0.1813 0.1420 0.9434 0.8900 0.8396 0.7921 0.7473 0.7050 0.6651 0.6274 0.5919 0.5584 0.5268 0.4970 0.4688 0.4423 0.4173 0.3936 0.3714 0.3503 0.3305 0.3118 0.2330 0.1741 0.1301 0.0972 0.9346 0.8734 0.8163 0.7629 0.7130 0.6663 0.6227 0.5820 0.5439 0.5083 0.4751 0.4440 0.4150 0.3878 0.3624 0.3387 0.3166 0.2959 0.2765 0.2584 0.1842 0.1314 0.0937 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.9174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855 0.3505 0,3186 0.2897 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0.0923 0.0573 0.0356 0.0221 0.8929 0.7972 0.7118 0.6355 0.5674 0.5066 0.4523 0.4039 0.3606 0.3220 0.2875 0.2567 0.2292 0.2046 0.1827 0.1631 0.1456 0.1300 0.1161 0.1037 0.0588 0.0334 0.0189 0.0107 0.8696 0.7561 0.6575 0.5718 0.4972 0.4323 0.3759 0.3269 0.2843 0.2472 0.2149 0.1869 0.1625 0.1413 0.1229 0.1069 0.0929 0.0808 0.0703 0.0611 0.0304 0.0151 0.0075 0.0037 "Lied to compute the parent value of nown future anont For example: How much would you need to investoy 105 compounded semiannually accurat 55.000 in 6 years from today? Using the fact of 12 and 1-52 semana periods and a smile of the fact 0358 You would readines $2.784 sday 55.000X0.550 TABLE B.2 f=(1+i)" Future Value of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% ON 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0100 1.0201 1.0303 1.0406 1.0510 1.0615 1.0721 1.0829 1.0937 1.1046 1.1157 1.1268 1.1381 1.1495 1.1610 1.1726 1. 1843 1.1961 1.2081 1.2202 1.2824 13478 1.4166 14889 1.0000 1.0200 1.0404 1.0612 1.0824 1.1041 1.1262 1.1487 1.1717 1.1951 1.2190 1.2434 1.2682 1.2936 1.3195 1.3459 1.3728 1.4002 1.4282 1.4568 1.4859 1.6406 1 8114 1.9999 2.2080 1.0000 1.0300 1.0609 1.0927 1.1255 1.1593 1.1941 1.2299 1.2668 1.3048 1.3439 1.3842 1.4258 1.4685 1.5126 1.5580 1.6047 1.6528 1.7024 1.7535 1.8061 2.0938 2.4273 2.8139 3.2620 1.0000 1.0400 1,0816 1.1249 1.1699 1.2167 1.2653 1.3159 1.3686 1.4233 1.4802 1.5395 1.6010 1.6651 1.7317 1.8009 1.8730 1.9479 2.0258 2.1068 2.1911 2.6658 3.2434 3.9461 4.8010 1.0000 1.0500 1.1025 1.1576 1.2155 1.2763 1.3401 1.4071 1.4775 1.5513 1.6289 1.7103 1.7959 1.8856 1.9799 2.0789 2.1829 2.2920 2.4066 2.5270 2.6533 3.3864 43219 5.5160 7.0400 1.0000 1.0600 1.1236 1.1910 1.2625 1.3382 14185 1.5036 1.5938 1.6895 1.7908 1.8983 20122 2.1329 2.2609 2.3966 2.5404 2.6928 2.8543 30256 3,2071 42919 5.7435 7.6861 10.2857 1.0000 1.0700 1.1449 1.2250 1.3108 1.4026 1.5007 1.6058 1.7182 1.8385 1.9672 2.1049 2.2522 2.4098 25785 2.7590 2.9522 3.1588 3.3799 3.6165 3.8697 5.4274 7.6123 10.6766 169745 10000 1.0800 1.1664 1.2597 1.3605 1.4693 1.5869 1.7138 1.8509 1.9990 2.1589 23316 2.5182 2.7196 2.9372 3.1722 3.4259 3.7000 3.9960 43157 46610 6.8485 10.0627 14.7853 21.7245 1.0000 1.0900 1.1881 1.2950 1.4116 1.5386 1.6771 1.8280 1.9926 21719 2.3674 25804 2.8127 3.0658 3.3417 3.6425 3.9703 4.3276 4.7171 5.1417 5.6044 8.6231 132677 20.4140 31.4094 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 19487 2.1436 2.3579 2.5937 2.8531 3.1384 3.4523 3.7975 4.1772 4.5950 5.0545 5.5599 6.1159 6.7275 10.8347 17.4494 28 1024 45 2593 1.0000 1.1200 1.2544 1.4049 1,5735 1.7623 1.9738 2.2107 2.4760 2.7731 3.1058 3.4785 3.8960 4.3635 4.8871 5.4736 6.1304 6.8660 7.6900 8.6128 9.6463 17 0001 29.9599 52.7996 93.0510 1.0000 1.1500 1.3225 1.5209 1.7490 20114 23131 26600 3.0590 3.5179 4.0456 4.6524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 123755 14.2318 16.3665 329190 66.2118 133.1755 267.8635 "Used to compute the future value of nown purient mont Forumple. What is the accumulated value of St. inverted today and compounded quarterly for $ycan? Uning the factors of = 1 and 2 quarterly periods and aquaretty interest of the focus 1483. The accumulated value is 54,457.70 3100 x 1.4859) p='1-0 +os 11 TABLE B.3: Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 0.9901 1.9704 29410 3.9020 4.8534 5.7955 6.7282 7.6517 8.5660 9.4713 10.3676 11.2551 12.1337 13.0037 13.8651 14.7179 15.5623 16.3983 17.2260 18.0456 22.0232 25.8077 29.4086 328347 0.9804 1.9416 2.8839 3.8077 4.7135 5.6014 6.4720 7.3255 8.1622 8.9826 9.7868 10.5753 11.3484 12.1062 12.8493 13.5777 14.2919 14.9920 15.6785 16.3514 19.5235 223965 24.9986 27.3555 0.9709 1.9135 2.8286 3.7171 4.5797 5.4172 6.2303 7.0197 7.7861 8.5302 9.2526 9.9540 10.6350 11.2961 11.9379 12.5611 13.1661 13.7535 14.3238 14.8775 17.4131 19.6004 21.4872 23.1148 0.9615 1.8861 2.7751 3.6299 4.4518 5.2421 6.0021 6.7327 7.4353 8.1109 8.7605 9.3851 9.9856 10.5631 11.1184 11.6523 12.1657 12.6593 13.1339 13.5903 15.6221 17.2920 18 6646 19.7928 0.9524 1.8594 2.7232 3.5460 4.3295 5.0757 5.7864 6.4632 7.1078 7.7217 8.3064 8.8633 9.3936 9.8986 10.3797 10.8378 11.2741 11.6896 120853 12.4622 14.0939 15.3725 16.3742 17.1591 0.9434 1.8334 26730 3.4651 4.2124 4.9173 5.5824 6.2098 6.8017 7.3601 7.8869 8.3838 8.8527 9 2950 9.7122 10.1059 10.4773 10.8276 11.1581 11.4699 12.7834 13.7648 14.4982 15.0463 0.9346 1.8080 2.6243 3.3872 4.1002 4.7665 5.3893 5.9713 6.5152 7.0236 7.4987 7.9427 8.3577 8.7455 9.1079 9.4466 9.7632 10.0591 10.3356 10.5940 11.6536 12.4090 129477 13.3317 0.9259 1.7833 2.5771 3.3121 3.9927 4.6229 5.2064 5.7466 6.2469 6.7101 7.1390 7.5361 7.9038 8 2442 8.5595 8.8514 9.1216 9.3719 9.6036 9.8181 10.6748 11.2578 11.6546 11.9246 0.9174 1.7591 2.5313 32397 3.8897 4.4859 5.0330 5.5348 5.9952 6.4177 6.8052 7.1607 7.4869 7.7862 8.0607 8.3126 8.5436 8.7556 8.9501 9.1285 9.8226 10.2737 10.5668 10.7574 09091 1.7355 24869 3.1699 3.7908 4.3553 4.8684 5.3349 5.7590 6.1446 6.4951 6.8137 7.1034 7.3667 7.6061 78237 8.0216 8.2014 8.3649 8.5136 9.0770 9.4269 9.6442 9.7791 0.8929 1.6901 2.4018 3.0373 3.6048 4.1114 4.5638 4.9676 5.3282 5.6502 5.9377 6.1944 6.4235 6.6282 6.8109 69740 7.1196 7.2497 7.3658 7.4694 7.8431 8.0552 8.1755 8.2438 0.8696 1.6257 2.2832 2.8550 3.3522 3.7845 4.1604 4.4873 4.7716 5.0188 5.2337 5.4206 5.5831 5.7245 5.8474 5.9542 6.0472 6.1280 6.1982 6.2593 6.4641 6.5660 6.6166 6.6418 Used to calculate the present value of series of equal payments made at the end of each period. For example: What is the prese value of $2.000 per year for 10 years asuming an annual interest rate of For = 10,799), the PV factor is 6,4177.52.000 per year for 10 years is the equivalent of 12x35 sody (2000x 6,4177) f=[(1 + i)" - 11/ TABLE B.4 Future Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 2 3 4 5 6 7 8 DOO 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 1.0000 1.0000 1.0000 2.0100 2.0200 20300 3.0301 3.0604 3,0909 4.0604 4.1216 4.1836 5.1010 5.2040 5.3091 6.1520 6.3081 6.4684 7.2135 734343 7.6625 8.2857 8.5830 8.8923 9.3685 9.7546 10.1591 10.4622 10.9497 11.4639 11.5668 12. 1687 12.8078 12.6825 13.4121 14.1920 13.8093 14.6803 15.6178 14.9474 15.9739 17.0863 16.0969 17.2934 18.5989 17.2579 18.6393 20.1569 18.4304 20.0121 21.7616 19.6147 21.4123 23.4144 20.8109 22.8406 25.1169 22.0190 24.2974 26.8704 28.2432 320303 36.4593 34.7849 40.5681 47.5754 41.6603 49.9945 60.4621 48.8864 60.4020 75.4013 1.0000 1.0000 1.0000 20400 20500 2.0600 3.1216 3.1525 3.1836 4.2465 4.3101 4.3746 5.4163 5.5256 5.6371 6.6330 6.8019 6.9753 7.8983 8.1420 8.3938 9.2142 9.5491 9.8975 10.5828 11.0266 11.4913 12.0061 12.5779 13.1808 13.4864 14,2068 14.9716 15.0258 15.9171 16.8699 16.6268 17.7130 18.8821 18.2919 19.5986 21.0151 20.0236 21.5786 23.2760 21.8245 23.6575 25.6725 23.6975 25.8404 28.2129 25.6454 28.1324 30.9057 27.6712 30.5390 33.7600 29.7781 33.0660 36.7856 41.6459 47.7271 54 8645 56.0849 66.4388 79,0582 73.6522 90.3203 1114348 95.0255 1207998 154.7620 1.0000 2.0700 3.2149 4.4399 5.7507 7.1533 8.6540 10.2598 11.9780 13.8164 15.7836 17.8885 20.1406 22.5505 25.1290 27.8881 30.8402 33.9990 37.3790 40.9955 63.2490 94.4608 138.2369 199.6351 1.0000 2.0800 3.2464 4.5061 5.8666 73359 8.9228 10.6366 12.4876 144866 16.6455 18.9771 21.4953 24.2149 27.1521 30.3243 33.7502 37.4502 41.4463 45.7620 73.1059 113.2832 172.3168 259.0565 1.0000 1.0000 1.0000 20900 2.1000 2.1200 3.2781 3.3100 3.3744 4.5731 4.6410 4.7793 5.9847 6.1051 6.3528 7.5233 7.7156 8.1152 9.2004 9.4872 10.0890 11.0285 11.4359 12.2997 13.0210 13.5795 14.7757 15. 1929 15.9374 17.5487 17.5603 18.5312 20.6546 20.1407 21.3843 24.1331 22.9534 24.5227 28.0291 26.0192 27.9750 32.3926 29.3609 31.7725 37 2797 33.0034 35.9497 42.7533 36.9737 40.5447 48.8837 41.3013 45.5992 55.7497 46.0185 51.1591 63.4397 51.1601 57 2750 720524 84.7009 98.3471 133.3339 136,3075 1644940 241.3322 215.7108 271.0244 431.6635 337,8824 442.5926767.0914 1.0000 2.1500 3.4725 4.9934 6.7424 8.7537 11.0668 13.7268 16.7858 20.3037 24.3493 29.0017 34.3519 40.5047 47.5804 55.7175 65.0751 75.8364 88.2118 102.4436 212.7930 434 7451 881.1702 1.779.0903 Used to calculate the fore value of a series of equal payments made at the end of each period Forexample: What is the realm of $4.000 per year for years assuming an annual interest rate of 8 For in=6,18). the factor is 7.3359.4000) per year for years accumut $29.343054000 733591