Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

fAssignment 8 - Sound (5) A stretched wire vibrates in its fundamental mode at a fre- (#1) kn-prob2130.problem quency of 450 Hz. What would be

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
\fAssignment 8 - Sound (5) A stretched wire vibrates in its fundamental mode at a fre- (#1) kn-prob2130.problem quency of 450 Hz. What would be the fundamental frequency Due date: Tue Apr 11 11:59:59 pm 2023 (EDT) if the wire were half as long, its diameter were doubled, and its tension were decreased by a factor of two? (1) Two strings are adjusted to vibrate at exactly 331.0 Hz. Then the tension in one string is increased slightly. After- Tries 0/10 ward, 37.00 beats per second are heard when the strings vi- brate at the same time. What is the new frequency of the (#6) cj-prob1702.problem string that was tightened? 6) Two identical speakers, one directly behind the other, are generating a 392 Hz sound wave. What is the smallest Tries 0/10 separation distance between the speakers that will produce destructive interference at the position of a listener standing #2) cj-prob1733a.problem in front of them? The speed of sound in air is 343 m/s. (2a) A string has a linear density of 8.5E-3 kg/m and is under 263 N of tension. The string is 1.5 m long is fixed at both Tries 0/10 ends and is vibrating in the standing wave pattern shown in the drawing. Determine the speed of the traveling waves that (#7) sb-prob1838a.problem make up the standing wave. (7a) When a hollow metal pipe that is open at both ends is cut into two pieces, the lowest resonance frequency in one Tries 0/10 piece is 258 Hz and that for the other is 409 Hz. What lowest resonant frequency would have been produced by the original K length of pipe? Assume the speed of sound in air is 345 m/s. Tries 0/10 (7b) How long was the original pipe? Tries 0/10 (2b) What is the wavelength? (#8) kn-prob2144.problem Tries 0/10 (8) A 102.3 g cord has an equilibrium length of 5.68 m. The (2c) What is the frequency? cord is stretched horizontally to a length of 7.47 m, then vibrated at 28.2 Hz. This produces a standing wave with two Tries 0/10 antinodes. What is the spring constant of the cord? Tries 0/10 (#3) kn-prob2142.problem (3) A heavy piece of hanging sculpture is suspended by a 92.4 cm long, 6.09 g steel wire. When the wind blows hard, the (#9) kn-prob2112a.problem wire hums at its fundamental frequency of 62.4 Hz. What is 9a) A 134.7 cm long, 8.27 g string, fixed at both ends, oscil the mass of the sculpture? lates in its n = 3.00 mode with a frequency of 338.0 Hz and a maximum amplitude of 4.96 mm. What is the wavelength Tries 0/10 of the oscillation? Tries 0/10 (#4) kn-prob2152.problem 4) A 43.8cm long wire with a mass of 3.60g and a tension (9b) What is the tension in the string? of 627.ON passes across the open end of an open-closed tube of air. The wire, which is fixed at both ends, is bowed at Tries 0/10 the center so as to vibrate at its fundamental frequency and generate a sound wave. Then the tube length is adjusted (#10) kn-prob2116a.problem until the fundamental frequency of the tube is heard. What (10a) What is the longest wavelength for standing sound is the length of the tube? (Assume vsound = 340.0m/s) waves in a 134.8cm long tube that is open at both ends? Tries 0/10 Tries 0/10 (10b) What is the second longest wavelength? (#5) sb-prob1822.problemANSWER ALL QUESTIONS AND WRITE A THOROUGH LAB REPORT WITH APPROPIATE DATA, OTHERWISE I'LL DOWNVOTE.Question 15: Using your answer to Question 1'2T rearrange it to find an equation for a line Y = 1'va that can be plotted to nd e/m. \"that are Y, M', and X in terms of the physical parameters AV, T2, 32, and e/m? Question 16: The Excel template generates a plot of AV vs 32. Does your data form a line or a parabola? Which should it form and Why? Question 17: The generated graph also contains a best t line. Which t parameter is related to e/m? Question 18: How can you calculate the ratio ef m from this t parameter? Question 19: What is the predicted value for the clectron's charge-towniass ratio= c/m, based on the accepted values 6 = 11302 x 1019 C and m = 9.11 x 1031 kg? Question 20: What is your experimentally determined value for efm? How does this compare to the accepted value? Express your answer as a percent difference % diff = {aimig\"(in)\": X 100%, where (e1)mp is your experimental value and [cf-rah\" is the accepted value. Data Acquisition Now you will take data and analyze it to extract the charge to lease ratio. In order to do so, the parameters of the Helmholtz coils need to be specied. Each coil contains N = 132 loops of wire, and each loop has a radius of R = 15.0 cm. The accompanying Excel template you will use already has these values as inputs, but this is where they come from. When you are ready to begin taking data. please follow these steps: 1. Download the accompanying Excel template from D2L and save it to the computer. 2. Set the voltage dial on the apparatus to 200 V and adjust the current until the diameter of the electron beam is 8.0 cm. Record the 1ralues of the voltage and the current in the appropriate elds in the template. 3. Increase the voltage by 30 V and adjust the current until the diameter of the electron beam is 8.0 cm. Record the values of the voltage and the current in the appropriate elds in the template. 4. Carry out this procedure for 4 more 30 V increments. always making sure that the diameter of the electron beam is 8.0 cm. and ll in the relevant elds of the Excel template

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Essential College Physics Volume 1

Authors: Andrew Rex, Richard Wolfson

1st Edition

978-0321611161, 0321611160

More Books

Students also viewed these Physics questions

Question

3. It is the commitment you show that is the deciding factor.

Answered: 1 week ago