Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Find an SVD of the matrix. - 2 3 A= 0 -2 A=Find an SVD of the matrix. 4 7 A= 0 0 1 4

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed
Find an SVD of the matrix. - 2 3 A= 0 -2 A=Find an SVD of the matrix. 4 7 A= 0 0 1 4 Give an SVD of matrix A below. A= (Type an exact answer, using radicals as needed.)Use technology to compute the singular values of the following 4 x 4 matrix and compute the condition number o /64. 4 0 -3 -7 - 6 9 9 9 7 -5 10 19 -1 2 4 -1 Write the singular values in decreasing order. 02 = 04 =\f10 Answer - 2 A = 4 7 4 Here we are trying to find out Solution using AAT & AT. A 1 Solution using A.A for normalized vectors v. A.AT = 65 0 32 32 0 17 - Find for : A.AT I A. AT - 21 = D 65- 2 0. 32 0 - 2 32 0 17-k . - 23 + 9272 + 812 = 0 .: 2 =0 2 : +1 1 : 81 -7 Feigenvectors . for 1: 81 65 0 32 0 0 O 0 O 81 0 10 32 0 . 17 0 0 111 - 16 0 32 O - 81 O 32 0 - 64 Using Row tounsfromation we give 1 -2 O O O O = The system associated with 2:81 . (A. A - 81 1 ) X 1 10 - 2 X 1 O * 2 O X 2 X3 0 0.0 X3 0 . X - 2 X 3 - 6 2 : 2x3 X2-6 . eigen vectors corresponding to the eigenvalue 2 = 81 150 V= 2x 3 ; Let x 3 = 1 O . Length= 14+0+1 - 2.236 2 : 4 , = (0. 894 0, 0.4:47) 012 = > feigenvectors for 2=1 65 0 32 - L 32 0 17 0 0 1 64 0 32 O -1 0 32 0 16 After Row transformation we give 1 0 0.5 0 1 . 0 - The system associated with eigenvalue 20=1 CAAT - 12 ) 1 0 .0.5 0 O 1 O 0 O 0 * 2: -0.513 . eigenvector Corresponding to the eigenvalue 2:1 - 1/2 23 VE O Let 23= 1 Length = 16 0.5 ) to+ 1 = 1.11913 = Feigen vectors for = 2:0 (AAT - 21 ) : 65 0 32 10 0 O O O - o 32 0 17 65 0 32 O O O 32 0 17 After Row transformation we give O -7 The system associated with eigenvalue 1=0 CA.AT - 02 ) x, 10 02 O 0 0 0 x3 eigenvectors corresponding to the eigenvalue 2=0. V - O Let 2q = 1 Length = 10 + 1to = 1 : 43 ( 0. 1, 0 )14 and Solution using AT. A for normalized Vector Vi ALA = 17 . 32 32 65 AT A - 21 = 0 172 32 32 65- 2 (17- 2 ) ( 65 -2 ) - 38*32 -0 2 :1 0 fa : 81 1 Eigenvector for 2 = 81 . A . A - 21 : 17 32 32. 65 O - 64 32 32 -16 After xoco transformation we will give. 1- 112 O - The system associated with 2 : 81(ATA - 812) = cigenvectors corresponding to eigenvalue 2: 81 15 V : 1/2 2 2 Let azel . U . = 1 /2 No Length. = ( 1/2 ) 2 + 12 = 1. 118 " V = ( 0 . 447 0 . 894 )/ 2 Eigenvectors for 2=1 AT. A - 21 = 17 32 32 65 16 32 32 64 After gow transformation we will tiny 0 0 The system associated with 2=l16 1x - - 2 12 eigenvectors corresponding to the eigenvalue 2 = 1 is V : - 2x2 " Let (2= 1 V. = - 2 Length: (-2)2 + 12 = 9.236 (- 0. 849 , 0.497 ) Now ist SUD solution using A AT E = 181 9 . 0 O 0 O O O O 0.844 - 0.447 O 1 0.447 0.894 V is found by using Uj = A. U; 0.447 - 0. 894 V = 0. 894 0.4 47\f2 - Now, eigenvector for 2= 16 A'A - 21 : 4 - 6 - 16 1 -6 13 O 1 4 - 6 16 0 - 6 13 O 16 - 12" - 6 -6 -3 Now , R. = R, / - 12 1 12 -C -3 Now R2 : Re'+ 6 R , o The system associated with the . eigenvalue 2 = 16 ( A !A - 16 7 ) 1 1/2 D X2 O = > 24 + 0. 5 012 = 0 : 2 : - 0.5 ( 2 . . eigen vectors . corresponding to the eigenvalue 2= 16 ip : V = -0.5 X 2 Let or 2 = . .: V. = -0.5 DC 2 13 Now . Ecignvector for 2 = 1 . "(AT. A - 21 ) - 4 -6 -1 1 0 3 -6 - 6 13 0 1 - 6 12 Now , R, = RI/ 3 1 - 2 - 6 12 Now R 2 = R2 + ( +6 R, ) 1 - 2 O . O The system associated with the eigenvalue 2 =1 (A'A - aI ) 1 -1 O O 21 -212=0" . eigen vectors Corresponding to the eigenvalue . 2 = 1 is V = let bel X 2 24) for eigen vectors - 1 ( - 0.5 , 1) Length L = (- 0.5 ) 2 + 12 2 LIL8 so , normalizing gives V. = / - 0.5 1 ) : ( 0 .4 4 72 , 0 84 46) 1418 For eigenvaluetor - ( & ), Length L = 22 + 12 = 2.2361 So normalizing gives , - 60 8949 , 0.4672 ( 2.2361 2.236.1 Sup Solution E = 016 0 4 0 - 0.4472 0. 84 4 4 0. 8449 0. 4 472 0. 89 49 - 0. 4672 6; -0.4672 - 0.84 49\f6 Now, Second Solution Using A . AT for normalized vetos u ; ( A . AT = - 2 - 2 0 13 - 6 0 - 2 .3 -2 - 6 4 Find cigen vector for A.AT AA - 21 =0 13-2 - 6 - 6 4-2 . (13 - 2 ) ( 4 -2 ) - 36 :0 . Ca - 12 ( 2 - 16) = 0 2 : 16 Now, for 2 = 16 (A AT - 21) : 13 - 6 - 16 b -3 -6 L- 6 4 1 - 6 - 12 Now , R . = RI / - 3 = 1 2 -6 - 12 Now R2 = Rat 6 R = 0 CA.AT - 167 1 2 2 2 0\f-> for eigen vector - 1 (-2.1) , Length L= (- 2 )2 + 12 : 2 .236 1 So, normalizing gives 2 1 2. 2361 2. 2361 2 , = ( - 0 . 8 944, 6. 4 472 ) - for eigenvector - 2 (as + 1 ), Length: 1= (0.5)2 + (172 = 1.118 So normalizing gives 0.5 1 ( 0.44 72, 0.89 94 1.118 1.118 JUL : C0.4472, 0.8944 O 4 0 6 JI O 1 -0. 8949 0.4472 0. 4 472 0. 894 4: V is were found using formula U;= L.AT.y . Gi V = 0. 4472 -0. 8944 - 0. 8944 -0.4472 verify god Solution U X E : - 0.89443 0.44921 4 0 0.45721 0. 89443 0 1 - 3.57772 0.49721 1. 78 884 0. 89443 ( U X E X ( V - 3:57772 0.4972) 1. 78884 0.894 43 0.4472 .:- 0.89 4b -0.8949 - 0.4972 - 1.99 99 4 9. 99 4 4 2 O - 1. 99 943 Solution is possible

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Variational Methods In Nonlinear Field Equations Solitary Waves Hylomorphic Solitons And Vortices

Authors: Vieri Benci, Donato Fortunato

1st Edition

3319069136, 9783319069135

More Books

Students also viewed these Mathematics questions

Question

6. Describe the greedy algorithm in a sentence or two.

Answered: 1 week ago