Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Following is information on two alternative investments being considered by Jolee Company. The company requires a 6% return from its investments. (PV of $1. EV
Following is information on two alternative investments being considered by Jolee Company. The company requires a 6% return from its investments. (PV of $1. EV of $1. PVA of $1, and EVA of $1) (Use appropriate factor(s) from the tables provided.) Initial investment Expected net cash flows in: Year 11 Year 2 Year 3 Year 41 Year 5 Project A $(176,325) Project B $(147,960) 36,000 41,000 60,000 59,000 87,295 65,000 86,400 73,000 65,000 26,000 a. For each alternative project compute the net present value. b. For each alternative project compute the profitability index. If the company can only select one project, which should it choose? Complete this question by entering your answers in the tabs below. Required A Required B For each alternative project compute the net present value. Initial Investment Chart Values are Based on: Project A 176,325 % Year Cash Inflow x PV Factor Present Value 1 36,000 x 2 60,000 x 3 87,295 x 4 86,400 x Initial Investment Project A $ 176,325 Chart Values are Based on: % Year Cash Inflow PV Factor = Present Value 1 36,000 x = 2 60,000 x = 3 87,295 x = 4 86,400 x = 5 65,000 x Project B Initial Investment $ 147,960 Year Cash Inflow X PV Factor = Present Value 1 = 2 3 4 5 = = = TABLE B.1 Present Value of 1 p = 1/(1+iy Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 0.9901 0.9804 0.9709 23456 2 0.9803 0.9612 0.9426 3 0.9706 0.9423 0.9151 0.9524 0.9615 0.9246 0.9070 0.8638 0.8890 4 0.9610 0.9238 0.8885 0.8548 0.8227 0.7921 0.9259 0.9346 0.9434 0.8417 0.8573 0.8734 0.8900 0.8163 0.8396 0.7629 0.9174 0.9091 0.8929 0.8696 0.8264 0.7972 0.7561 0.7938 0.7722 0.7513 0.7118 0.6575 0.7350 0.7084 0.6830 0.6355 0.5718 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.6806 0.7130 0.6499 0.6209 0.5674 0.4972 6 0.9420 0.8880 08375 0.7903 0.7462 0.7050 0.6663 0.6302 0.5963 0.5645 0.5066 0.4323 7 0.9327 0.8706 0.8131 0,7599 0.7107 0.6651 0.6227 0.5835 0.5470 0.5132 0.4523 0.3759 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 0.5403 0.5019 0.4665 0.4039 0.3269 9 0.9143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 0.4604 0.5002 0.4241 0.3606 0.2843 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.4224 0.3855 0.3220 0.2472 11 0.8963 0.8043 0.7224 0.6496 0.5847 0.5268 0.4751 0.4289 0.3875 0.3505 0.2875 0.2149 12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3186 0.3555 0.3971 0.2567 0.1869 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2292 0.1625 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 0.3152 0.2745 0.2394 0.1827 0.1229 16 0.8528 0.7284 0.6232 0.5339 0.4581 0.3936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 17 0.8444 0.7142 0.6050 0.5134 0.4363 0.3714 0.3166 0.2703 0.2311 0.1978 0.1456 0.0929 18 0.8360 0.7002 0.5874 0.4936 0.4155 0.3503 0.2959 0.2120 0.2502 0.1799 0.1300 0.0808 19 0.8277 0.6864 0.5703 0.4746 0.3957 0.3305 0.2765 0.2317 0.1945 0.1635 0.1161 0.0703 20 0.8195 0.6730 0.5537 0.4564 0.3769 0.3118 0.2584 0.2145 0.1784 0.1486 0.1037 0.0611 25 0.7798 0.6095 0.4776 0.3751 0.2953 0.2330 0.1842 0.1460 0.1160 0.0923 0.0588 0.0304 30 0.7419 0.5521 0.4120 0.3083 0.2314 0.1741 0.1314 0.0994 0.0754 0.0573 0.0334 0.0151 35 0.7059 0.5000 0.3554 0.2534 0.1813 0.1301 0.0937 0.0676 0.0490 0.0356 0.0189 0.0075 40 0.6717 0.4529 0.3066 0.2083 0.1420 0.0972 0.0668 0.0460 0.0318 0.0221 0.0107 0.0037 "Used to compute the present value from today? Using the facts of of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years 12 and 15% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today (55,000 x 0.5568) TABLE B.2 Future Value of 1 f=(1+i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 1.0800 1.0700 1.0900 1.1000 1.1200 1.1500 2 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.3225 3 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.3310 1.4049 1.5209 4 1.0406 1.0824 1.1255 1.1699 1.2155 1.2625 1.3108 1.3605 1.4116 1.4641 1.5735 1.7490 5 1.0510 1.1041 1.1593 1.2167 1.2763 1.3382 1.4026 1.4693 1.5386 1.6105 1.7623 20114 6 1.0615 1.1262 1.1941 1.2653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.9738 2.3131 7 1.0721 1.1487 1.2299 1.3159 1.4071 1.5036 1.6058 1.7138 1.8280 1.9487 2.2107 2.6600 1.0829 1.1717 1.2668 1.3686 1.4775 1.5938 1.7182 1.8509 1.9926 2.1436 2.4760 3.0590 9 1.0937 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.9990 2.1719 2.3579 2.7731 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.7908 1.9672 2.1589 2.3674 2.5937 3.1058 4.0456 11 1.1157 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 2.3316 2.5804 2.8531 3.4785 4.6524 12 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 2.5182 2.8127 3.1384 3.8960 5.3503 13 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 14 1.1495 1.3195 1.5126 1.7317 1.9799 2.2609 2.5785 2.9372 3.3417 3.7975 4.8871 7.0757 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.1722 3.6425 4.1772 5.4736 8.1371 16 1.1726 1.3728 1.6047 1.8730 2.1829 2.5404 2.9522 3.4259 3.9703 4.5950 6.1304 9.3576 17 1.1843 1.4002 1.6528 1.9479 2.2920 2.6928 3.1588 3.7000 4.3276 5.0545 6.8660 10.7613 18. 1.1961 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 4.3157 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.4859 1.8061 25 1.2824 1.6406 2.0938 30 35 40 1.4889 1.3478 1.8114 2:4273 1.4166 1.9999 2.8139 2.2080 3.2620 3.2434 3.9461 4.80101 2.1911 2.6533 3.2071 2.6658 3.3864 4.2919 4.3219 5.7435 5.5160 7.6861 7.0400 10.2857 3.8697 4.6610 5.6044 5.4274 6.8485 8.6231 7.6123 10.0627 13.2677 17.4494 10.6766 14.7853 20.4140 28.1024 14.9745 21.7245 31.4094 45.2593 6.7275 9.6463 16.3665 10.8347 17.0001 32.9190 29.9599 66.2118 52.7996 133.1755 93.0510 267.8635 "Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of a 20 and 1-2% 20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4,457.70 ($3.000 x 1.4859) (1+1)* TABLE B.3 Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 2 19704 1.9416 1.9135 1.8861 1.8594 1.8334 1.8080 0.9174 1.7591 1.7833 3 2.9410 2.8839 2.8286 2.7751 2.7232 2.6730 2.6243 2.5771 2.5313 0.8696 0.9091 0.8929 1.7355 1.6901 1.6257 2.4869 2.4018 2.2832 4 3.9020 3.8077 3.7171 3.6299 3.5460 3.4651 3.3872 3.3121 3.2397 3.0373 3.1699 2.8550 5 4.8534 4.7135 4.5797 4.4518 4.3295 4.2124 4.1002 3.9927 3.8897 3.7908 3.6048 3.3522 6 5.7955 5.6014 54172 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 7 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 5.0330 4.8684 4.5638 4.1604 8 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.7466 5.5348 5.3349 4.9676 4.4873 9 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 10 9.4713) 8.9826 853021 8.1109 7.7217 7.3601 7.0236 6.7101 6.4177 6.1446 5.6502 5.0188 11 10.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 7.1390 6.8052 6.4951 5.9377 5.2337 12 11.2551 10.5753 9.9540 9.3851 8.8633 8.3838 7.9427 7.5361 7.1607 6.8137 6.1944 5.4206 13 12.1337 11.3484 9.9856 10.6350 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.4235 5.5831 14 13.0037 12.1062 11.2961 10.5631 9.8986 9.2950 8.7455 8.2442 7.7862 7.3667 6.6282 5.7245 15 13.8651 12.8493 16 14.7179 13.5777 17 15.5623 18 16.3983 14.9920 19 17.2260 15.6785 20 18.0456 16.3514 25 22.0232 19.5235 30 35 25.8077 22.3965 19.6004 29.4086 24.9986 11.9379 11.1184 12.5611 11.6523 14.2919 13.1661 12.1657 11.2741 10.4773 13.7535 12.6593 11.6896 10.8276 14.3238 13.1339 12.0853 11.1581 14.8775 13.5903 12.4622 11.4699 17.4131 15.6221 12.7834 17.2920 10.3797 9.7122 9.1079 8.5595 8.0607 7.6061 6.8109 5.8474 10.8378 10.1059 9.4466 8.8514 8.3126 7.8237 5.9542 6.9740 9.7632 9.1216 8.5436 8.0216 7.1196 6.0472 10.0591 9.3719 8.7556 8.2014 7.2497 6.1280 9.6036 14.0939 21.4872 18.6646 40 328347 27.3555 23.1148 153725 16.3742 14.4982 19.7928 17.1591 15.0463 13.7648 10.3356 8.9501 6.1982 10.5940 9.8181 9.1285 8.5136 7.4694 6.2593 11.6536 10.6748 9.8226 9.0770 7.8431 64641 12.4090 11.2578 10.2737 9.4269 8.0552 6.5660 12.9477 11.6546 10.5668 9.6442 8.1755 6.6166 13.3317 11.9246 10.7574 9.7791 8.2438 6.6418 8.3649 7.3658 hed to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2000 per year for 10 years awuming an al of 97 For 10,9%), the PV factor is 64177.52,000 per year for 10 years is the equivalent of $12.835 today (32,000 x 6.4177) S= [(1+i)-11/i TABLE B.4 Future Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2 20100 2.0200 2.0300 2.0400 2.0600 2.0500 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 3.2149 3.2464 3.2781 3.3100 3.3744 3.4725 4 4.0604 4.1216 4.2465 4.1836 4.3101 4.3746 4.4399 4.5061 4.5731 4.6410 4.7793 4.9934 5 5.1010 5.2040 5.3091 5.4163 5.6371 5.5256 5.7507 5.8666 5.9847 6.1051 6.3528 6.7424 6 6.1520 6.3081 6.4684 6.6330 7 7.2135 7.4343 7.6625 6.8019 7.8983 8.1420 7.1533 6.9753 7.3359 7.5233 7.7156 8.1152 8.7537 8 8.2857 8.5830 8.8923 9.2142 9.5491 8.3938 8.6540 9.8975 8.9228 9.2004 9.4872 10.0890 11.0668 10.6366 10.2598 11.0285 11.4359 12.2997 13.7268 9 9.3685 9.7546 10.1591 10.5828 11.0266 11.9780 11.4913 12.4876 13.0210 13.5795 14.7757 16.7858 10 10.4622 10.9497 11.4639 12.0061 12.5779 13.1808 13.8164) 14.4866 15.1929 15.9374 17.5487 20.3037 11 11.5668 12.1687 12.8078 13.4864 14.2068 14.9716 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 12 12.6825 13.4121 14.1920 15.0258 15.9171 16.8699 17.8885 18.9771 20.1407 21.3843 24.1331 29.0017 13 13.8093 14.6803 15.6178 16.6268 17.7130 18.8821 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 14 14.9474 15.9739 17.0863 18.2919 19.5986 21.0151 22.5505 26.0192 24.2149 27.9750 32.3926 40.5047 15 16.0969 17.2934 18.5989 20.0236 21.5786 25.1290 23.2760 29.3609 27.1521 31.7725 37.2797 47.5804 16 17.2579 18.6393 20.1569 21.8245 23.6575 25.6725 27.8881 33.0034 30.3243 35.9497 42.7533 55.7175 17 18.4304 20.0121 21.7616 23.6975 25.8404 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 18 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 33.9990 37.4502 41.3013 45.5992 55.7497 75.8364 19 20.8109 22.8406 25.1169 27.6712 30.5390 33.7600 37.3790 41.4463 46.0185 51.1591 63.4397 88.2118 20 22.0190 24.2974 26.8704 40.9955 25 30 35 28.2432 32.0303 36.4593 47.5754 40.5681 34.7849 41.6603 49.9945 60.4621 40 48.8864 60.4020 75.4013 29.7781 33.0660 36.7856 73.1059 84.7009 98.3471 133.3339 63.2490 41.6459 47.7271 54.8645 113.2832 94.4608 136.3075 164.4940 241.3327 66.4388 56.0849 79.0582 73.6522 90.3203 111.4348 138.2369 172.3168 215.7108 271.0244 431.6635 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 767.0914 45.7620 51.1601 57.2750 72.0524 102.4436 212.7930 434.7451 881.1702 1,779.0903 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interest rate of 8%? For 6,1%), the FV factor is 7.3359. $4000 per year for 6 years accumulates to $29.343.40 ($4000 x 7.3359)
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started