Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

For each of the following situations, identify (1) the case as either ( a ) a present or a future value and ( b )

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedFor each of the following situations, identify (1) the case as either (a) a present or a future value and (b) a single amount or an annuity, (2) the table you would use in your computations (but do not solve the problem), and (3) the interest rate and time periods you would use. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factors" to 4 decimal places.) a. You need to accumulate $17,000 for a trip you wish to take in four years. You are able to earn 6% compounded semiannually on your savings. You plan to make only one deposit and let the money accumulate for four years. How would you determine the amount of the one-time deposit? (Round your answer to 2 decimal places.) b. Assume the same facts as in part (a) except that you will make semiannual deposits to your savings account. What is the required amount of each semiannual deposit? (Round your answer to 2 decimal places.) c-1. You want to retire after working 35 years with savings in excess of $1,100,000. You expect to save $3,300 a year for 35 years and earn an annual rate of interest of 11%. (Round your answer to 2 decimal places.) c-2. Will you be able to retire with more than $1,100,000 in 35 years? d-1. A sweepstakes agency names you a grand prize winner. You can take $226,000 immediately or elect to receive annual installments of $37,000 for 20 years. You can earn 12% annually on any investments you make. (Round your answer to 2 decimal places.) d-2. Which prize do you choose to receive?

TABLE B.49 f=[(1 + i)" - 1]/i Future Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% OOO OWN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 3.03013.0604 3.0909 3.1216 3.1525 3.1836 4.0604 4.1216 4.1836 4.2465 4.3101 4.3746 5.1010 5.2040 5.3091 5.4163 5.5256 5.6371 6.1520 6.3081 6.4684 6.80196 .9753 7.21357.4343 7.6625 7.89838.1420 8.3938 8.2857 8.5830 8.8923 9.2142 9.54919.8975 9.3685 9.7546 10.1591 10.5828 11.0266 11.4913 10.4622 10.9497 11.4639 12.006112.5779 13.1808 11.5668 12.1687 12.8078 13.4864 14.2068 14.9716 12.6825 13.4121 14.1920 15.0258 15.9171 16.8699 13.8093 14.6803 15.6178 16.6268 17.7130 18.8821 14.9474 15.9739 17.0863 18.2919 19.5986 21.0151 16.0969 17.2934 18.5989 20.0236 21.5786 23.2760 17.2579 18.6393 20.1569 21.8245 23.6575 25.6725 18.4304 20.0121 21.7616 23.6975 25.8404 28.2129 19.6147 21.4123 23.4144 25.6454 28.1324 30.9057 20.8109 22.8406 25.1169 27.6712 30.5390 33.7600 22.0190 24.2974 26.8704 29.7781 33.0660 36.7856 28.2432 32.0303 36.459341.6459 47.7271 54.8645 34.7849 40.5681 47.5754 56.084966.4388 79.0582 41.6603 49.994560.4621 73.6522 90.3203 111.4348 48.8864 60.4020 75.401395.0255 120.7998 154.7620 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.0700 2.0800 2.0900 2.1000 2.1200 2.1500 3.2149 3.2464 3.2781 3.3100 3.3744 3.4725 4.4399 4.5061 4.5731 4.6410 4.7793 4.9934 5.75075.8666 5.9847 6.1051 6.3528 6.7424 7.1533 7.33597 .5233 7.7156 8.1152 8.7537 8.6540 8.9228 9.2004 9.4872 10.0890 11.0668 10.2598 10.6366 11.0285 11.4359 12.2997 13.7268 11.9780 12.4876 13.0210 13.5795 14.7757 16.7858 13.8164 14.4866 15.1929 15.9374 17.5487 20.3037 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 17.8885 18.9771 20.1407 21.3843 24.1331 29.0017 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 25.1290 27.1521 29.360931.7725 37.2797 47.5804 27.8881 30.3243 33.0034 35.9497 42.7533 55.7175 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 33.9990 37.450241.3013 45.5992 55.7497 75.8364 37.3790 41.4463 46.0185 51.1591 63.4397 88.2118 40.9955 45.7620 51.1601 57.2750 72.0524 102.4436 63.2490 73.1059 84.700998.3471 133.3339 212.7930 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 138.2369 172.3168 215.7108 271.0244 431.6635 881.1702 199.6351 259.0565337.8824 442.5926 767.0914 1.779.0903 15 16 17 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4.000 per year for 6 years assuming an annual interest rate of 8%? For (n=6,i=8%), the FV factor is 7.3359. $4.000 per year for 6 years accumulates to $29,343.60 ($4,000 x 7.3359). p=[1-a + TABLE B.3: Present Value of an Annuity of 1 Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% O co vo 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0 .9346 1.9704 1.9416 1.9135 1.8861 1.8594 1.8334 1.8080 2.9410 2.8839 2.8286 2.7751 2.7232 2.6730 2.6243 3.9020 3.8077 3.7171 3.6299 3.5460 34651 3.3872 4.85344.71354.5797 4.4518 4.3295 4.2124 4.1002 5.7955 5.6014 5.41725.2421 5.0757 4.9173 4.7665 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 8.5660 8.1622 7.7861 7.4353 7.1078 6.8017 6.5152 9.4713 8.9826 8.53028.11097.7217 7.3601 7.0236 10.3676 9.7868 9.2526 8.7605 8.3064 7.8869 7.4987 11.2551 10.5753 9.9540 9.3851 8.8633 8.3838 7.9427 12.1337 11.3484 10.6350 9.9856 9.3936 8.8527 8.3577 13.0037 12.1062 11.2961 10.5631 9.8986 9.2950 8.7455 13.8651 12.8493 44 9279 11.9379 11 1184 11.1184 10.3797 9.7122 9.1079 14.7179 13.5777 12.5611 11.6523 10.8378 10.1059 9.4466 15.5623 14.2919 13.1661 12.1657 11.2741 10.4773 9.7632 16.3983 14.9920 13.7535 12.6593 11.6896 10.8276 10.0591 17.2260 15.6785 14.3238 13.1339 12.0853 11.1581 10.3356 18.0456 16.3514 14.8775 13.5903 12.4622 11.4699 10.5940 22.0232 19.523517.4131 15.6221 14.093912.7834 11.6536 25.8077 22.3965 19.6004 17.2920 15.3725 13.7648 12.4090 29.4086 24.9986 21.4872 18.6646 16.3742 14.4982 1 2.9477 32.8347 27.3555 23.1148 19.7928 17.1591 15.0463 13.3317 0.9259 0.9174 0.9091 0.8929 0.8696 1.7833 1.7591 1.7355 1.6901 1.6257 2.5771 2.5313 2.4869 2.4018 2.2832 3.3121 3.2397 3.16993.0373 2.8550 3.9927 3.8897 3.7908 3.6048 3.3522 4.62294.48594.3553 4.1114 3.7845 5.2064 5.0330 4.8684 4.5638 4.1604 5.7466 5.5348 5.33494.9676 4.4873 6.2469 5.9952 5.7590 5.3282 4.7716 6.71016.4177 6.1446 5.6502 5.0188 7.1390 6.8052 6.4951 5.9377 5.2337 7.5361 7.1607 6.8137 6.1944 5.4206 7.9038 7.4869 7.10346.4235 5.5831 8.2442 7.78627.3667 6.6282 5.7245 8.5595 8.0607 7.60616.81095.8474 8.8514 8.3126 7.8237 6.9740 5.9542 9.1216 8.5436 8.0216 7.1196 6.0472 9 .3719 8.7556 8.2014 7.2497 6.1280 9.6036 8.9501 8.36497.3658 6.1982 9.8181 9.1285 8.5136 7.4694 6.2593 10.6748 9.82269.0770 7.8431 6.4641 11.2578 10.2737 9.4269 8.0552 6.5660 11.6546 10.5668 9.6442 8.1755 6.6166 11.9246 10.7574 9.77918.2438 6.6418 *Used to calculate the present value of a series of equal payments made at the end of each period. For example: What is the present value of $2,000 per year for 10 years assuming an annual interest rate of 9%? For (n = 10,i=9%), the PV factor is 6.4177. $2,000 per year for 10 years is the equivalent of $12,835 today ($2,000 X 6.4177). TABLE B.2 Future Value of 1 f= (1 + i)" Rate 7% Periods 1% 2% 3% 4% 5% 6% 8% 9% 10% 12% 12% 15% 2 3 1 1.0000 1.0100 1.0201 .0303 1.0406 1.0510 1.0615 1.0721 1.0829 1.0937 1.1046 1.1157 1.1268 1.1381 1.1495 1.1610 1.1726 1.1843 1.1961 1.2081 1.2202 1.2824 1.3478 1.4166 1.4889 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0200 1.0300 1.0400 1.0500 1.0600 1.0700 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.0824 1.1255 1.1699 1.2155 1.2625 1.3108 1.1041 1.1593 1.2167 1.2763 1.3382 1.4026 1.1262 1.1941 1.2653 1.3401 1.4185 1.5007 1.1487 1.2299 1.3159 1.4071 1.5036 1.6058 1.1717 1.2668 1.3686 1.4775 1.5938 1.7182 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.21901.3439 1.4802 1.6289 1.7908 1.9672 1.2434 1.3842 1.5395 1.7103 1.8983 2.1049 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 1.2936 1.4685 1.66511.8856 2.1329 2.4098 1.3195 1.5126 1.7317 1.9799 2.2609 2.5785 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 1.3728 1.6047 1.8730 2.1829 2.5404 2.9522 1.4002 1.6528 1.9479 2.2920 2.6928 3.1588 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 1.4568 1.7535 2.1068 2.5270 3.0256 3.6165 1.4859 1.8061 2.1911 2.6533 3.2071 3.8697 1.6406 2.0938 2.6658 3.3864 4.2919 5.4274 1.8114 2.4273 3.2434 4.32195 .74357.6123 1.99992.81393.94615.5160 7.6861 10.6766 2.2080 3.2620 4.8010 7.0400 10.2857 14.9745 1.0000 1.0000 1.0800 1.0900 1.1664 1.1881 1.2597 1.2950 1.3605 1.4116 1.4693 1.5386 1.58691.6771 1.7138 1.8280 1.85091.9926 1.9990 2.1719 2.1589 2.3674 2.3316 2.5804 2.5182 2.8127 2.7196 3.0658 2.9372 3.3417 3.1722 3.6425 3.4259 3.9703 3.7000 4.3276 3.9960 4.7171 4.3157 5.1417 4.6610 5.6044 6.8485 8.6231 10.0627 13.2677 14.7853 20.4140 21.7245 31.4094 1.0000 1.0000 1.1000 1.1200 1.2100 1.2544 1.3310 1.4049 1.4641 1.5735 1.6105 1.7623 1.7716 1.9738 1.9487 2.2107 2.1436 2.4760 2.3579 2.7731 2.5937 3.1058 2.8531 3.4785 3.1384 3.8960 3.4523 4.3635 3.7975 4.8871 4.1772 5.4736 4.5950 6.1304 5.0545 6.8660 5.5599 7.6900 6.1159 8.6128 6.7275 9.6463 10.834717.0001 17.4494 29.9599 28.1024 52.7996 45.2593 93.0510 1.0000 1.1500 1.3225 1.5209 1.7490 2.0114 2.3131 2.6600 3.0590 3.5179 4.0456 4.6524 5.3503 6.1528 7.0757 8.1371 9.3576 10.7613 12.3755 14.2318 16.3665 32.9190 66.2118 133.1755 267.8635 40 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of n = 20 and i = 2% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4,457.70 ($3,000 x 1.4859). TABLE B.1 Present Value of 1 p=1/(1 + i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% 0.9901 0.9803 0.9706 0.9610 0.9515 0.9420 0.9327 0.9235 0.9143 0.9053 0.8963 0.8874 0.8787 0.8700 0.8613 0.8528 0.8444 0.8360 0.8277 0.8195 0.7798 0.7419 0.7059 0.6717 0.9804 0.9612 0.9423 0.9238 0.9057 0.8880 0.8706 0.8535 0.8368 0.8203 0.8043 0.7885 0.7730 0.7579 0.7430 0.7284 0.7142 0.7002 0.6864 0.6730 0.6095 0.5521 0.5000 0.4529 0.9709 0.9426 0.9151 0.8885 0.8626 0.8375 0.8131 0.7894 0.7664 0.7441 0.7224 0.7014 0.6810 0.6611 0.6419 0.6232 0.6050 0.5874 0.5703 0.5537 0.4776 0.4120 0.3554 0.3066 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6006 0.5775 0.5553 0.5339 0.5134 0.4936 0.4746 0.4564 0.3751 0.3083 0.25340 0.2083 0.9524 0.9070 0.8638 0.8227 0.7835 0.7462 0.7107 0.6768 0.6446 0.6139 0.5847 0.5568 0.5303 0.5051 0.4810 0.4581 0.4363 0.4155 0.3957 0.3769 0.2953 0.2314 .1813 0.1420 0.94340.9346 0.8900 0.8734 0.8396 0.8163 0.7921 0.7629 0.7473 0.7130 0.7050 0.6663 0.6651 0.6227 0.6274 0.5820 0.5919 0.5439 0.5584 0.5083 0.5268 0.4751 0.4970 0.4440 0.4688 0.4150 0.4423 0.3878 0.4173 0.3624 0.3936 0.3387 0.3714 0.3166 0.3503 0.2959 0.3305 0.2765 0.3118 0.2584 0.2330 0.1842 0.1741 0.1314 0.1301 0.0937 0.0972 0.0668 0.9259 0.8573 0.7938 0.7350 0.6806 0.6302 0.5835 0.5403 0.5002 0.4632 0.4289 0.3971 0.3677 0.3405 0.3152 0.2919 0.2703 0.2502 0.2317 0.2145 0.1460 0.0994 0.0676 0.0460 0.9174 0.8417 0.7722 0.7084 0.6499 0.5963 0.5470 0.5019 0.4604 0.4224 0.3875 0.3555 0.3262 0.2992 0.2745 0.2519 0.2311 0.2120 0.1945 0.1784 0.1160 0.0754 0.0490 0.0318 0.9091 0.8264 0.7513 0.6830 0.6209 0.5645 0.5132 0.4665 0.4241 0.3855 0.3505 0.3186 0.2897 0.2633 0.2394 0.2176 0.1978 0.1799 0.1635 0.1486 0.0923 0.0573 0.0356 0.0221 0.8929 0.8696 0.7972 0.7561 0.7118 0.6575 0.6355 0.5718 0.5674 0.4972 0.5066 0.4323 0.4523 0.3759 0.4039 0.3269 0.3606 0.2843 0.3220 0.2472 0.2875 0.2149 0.2567 0.1869 0.2292 0.1625 0.2046 0.1413 0.1827 0.1229 0.1631 0.1069 0.1456 0.0929 0.1300 0.0808 0.1161 0.0703 0.1037 0.0611 0.0588 0.0304 0.0334 0.0151 0.01890.0075 0.0107 0.0037 *Used to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 years from today? Using the factors of n= 12 and i=5% (12 semiannual periods and a semiannual rate of 5%), the factor is 0.5568. You would need to invest $2,784 today ($5.000 x 0.5568)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Accounting questions

Question

* What is the importance of soil testing in civil engineering?

Answered: 1 week ago

Question

Explain the concept of shear force and bending moment in beams.

Answered: 1 week ago