Answered step by step
Verified Expert Solution
Question
1 Approved Answer
For the HMEQ dataset, you are given a target variable BAD. Your task is to apply any binary classification algorithm to the dataset, employing a
For the HMEQ dataset, you are given a target variable BAD. Your task is to apply any binary classification algorithm to the dataset, employing a suitable training and test split.
Use a linear regression model to model the LGD based on the independent variables provided in the dataset.
BAD | LOAN | MORTDUE | VALUE | REASON | JOB | YOJ | DEROG | DELINQ | CLAGE | NINQ | CLNO | DEBTINC |
1 | 1100 | 25860 | 39025 | HomeImp | Other | 10.05.2023 | 0 | 0 | 94.366.666.667 | 1 | 9 | |
1 | 1300 | 70053 | 68400 | HomeImp | Other | 07.01.1900 | 0 | 2 | 12.183.333.333 | 0 | 14 | |
1 | 1500 | 13500 | 16700 | HomeImp | Other | 04.01.1900 | 0 | 0 | 14.946.666.667 | 1 | 10 | |
1 | 1500 | |||||||||||
0 | 1700 | 97800 | 112000 | HomeImp | Office | 03.01.1900 | 0 | 0 | 93.333.333.333 | 0 | 14 | |
1 | 1700 | 30548 | 40320 | HomeImp | Other | 09.01.1900 | 0 | 0 | 10.146.600.191 | 1 | 8 | 37.113.613.558 |
1 | 1800 | 48649 | 57037 | HomeImp | Other | 05.01.1900 | 3 | 2 | 77.1 | 1 | 17 | |
1 | 1800 | 28502 | 43034 | HomeImp | Other | 11.01.1900 | 0 | 0 | 88.766.029.879 | 0 | 8 | 36.884.894.093 |
1 | 2000 | 32700 | 46740 | HomeImp | Other | 03.01.1900 | 0 | 2 | 21.693.333.333 | 1 | 12 | |
1 | 2000 | 62250 | HomeImp | Sales | 16.01.1900 | 0 | 0 | 115.8 | 0 | 13 | ||
1 | 2000 | 22608 | 18.01.1900 | |||||||||
1 | 2000 | 20627 | 29800 | HomeImp | Office | 11.01.1900 | 0 | 1 | 12.253.333.333 | 1 | 9 | |
1 | 2000 | 45000 | 55000 | HomeImp | Other | 03.01.1900 | 0 | 0 | 86.066.666.667 | 2 | 25 | |
0 | 2000 | 64536 | 87400 | Mgr | 02.05.2023 | 0 | 0 | 14.713.333.333 | 0 | 24 | ||
1 | 2100 | 71000 | 83850 | HomeImp | Other | 08.01.1900 | 0 | 1 | 123 | 0 | 16 | |
1 | 2200 | 24280 | 34687 | HomeImp | Other | 0 | 1 | 30.086.666.667 | 0 | 8 | ||
1 | 2200 | 90957 | 102600 | HomeImp | Mgr | 07.01.1900 | 2 | 6 | 122.9 | 1 | 22 | |
1 | 2200 | 23030 | 19.01.1900 | 37.113.122.995 | ||||||||
1 | 2300 | 28192 | 40150 | HomeImp | Other | 04.05.2023 | 0 | 0 | 54.6 | 1 | 16 | |
0 | 2300 | 102370 | 120953 | HomeImp | Office | 02.01.1900 | 0 | 0 | 90.992.533.467 | 0 | 13 | 31.588.503.178 |
1 | 2300 | 37626 | 46200 | HomeImp | Other | 03.01.1900 | 0 | 1 | 12.226.666.667 | 1 | 14 | |
1 | 2400 | 50000 | 73395 | HomeImp | ProfExe | 05.01.1900 | 1 | 0 | 1 | 0 | ||
1 | 2400 | 28000 | 40800 | HomeImp | Mgr | 12.01.1900 | 0 | 0 | 67.2 | 2 | 22 | |
1 | 2400 | 18000 | HomeImp | Mgr | 22.01.1900 | 2 | 12.173.333.333 | 0 | 10 | |||
1 | 2400 | 17180 | HomeImp | Other | 0 | 0 | 14.566.666.667 | 3 | 4 | |||
1 | 2400 | 34863 | 47471 | HomeImp | Mgr | 12.01.1900 | 0 | 0 | 70.491.080.032 | 1 | 21 | 38.263.600.731 |
0 | 2400 | 98449 | 117195 | HomeImp | Office | 04.01.1900 | 0 | 0 | 93.811.774.855 | 0 | 13 | 29.681.827.045 |
1 | 2500 | 15000 | 20200 | HomeImp | 18.01.1900 | 0 | 0 | 13.606.666.667 | 1 | 19 | ||
1 | 2500 | 25116 | 36350 | HomeImp | Other | 10.01.1900 | 1 | 2 | 27.696.666.667 | 0 | 9 | |
0 | 2500 | 7229 | 44516 | HomeImp | Self | 0 | 0 | 208 | 0 | 12 | ||
0 | 2500 | 71408 | 78600 | HomeImp | ProfExe | 08.01.1900 | 0 | 0 | 25.573.333.333 | 0 | 12 | |
1 | 2800 | 50795 | 63100 | HomeImp | Self | 26.01.1900 | 2 | 15 | 14.563.333.333 | 3 | 45 | |
1 | 2800 | 4000 | 60850 | HomeImp | Other | 16.01.1900 | 4 | 0 | 11.263.333.333 | 2 | 9 | |
1 | 2900 | 78600 | 113000 | DebtCon | ProfExe | 06.01.1900 | 1 | 0 | 16.533.333.333 | 2 | 26 | |
0 | 2900 | 103949 | 112505 | HomeImp | Office | 01.01.1900 | 0 | 0 | 9.610.232.967 | 0 | 13 | 30.051.136.286 |
0 | 2900 | 104373 | 120702 | HomeImp | Office | 02.01.1900 | 0 | 0 | 10.154.029.753 | 0 | 13 | 29.915.859.028 |
1 | 2900 | 7750 | 67996 | HomeImp | Other | 16.01.1900 | 3 | 0 | 12.220.466.276 | 2 | 8 | 36.211.347.998 |
1 | 2900 | 61962 | 70915 | DebtCon | Mgr | 02.01.1900 | 0 | 0 | 28.280.165.924 | 3 | 37 | 4.920.639.579 |
0 | 3000 | 104570 | 121729 | HomeImp | Office | 02.01.1900 | 0 | 0 | 85.884.371.895 | 0 | 14 | 32.059.783.267 |
1 | 3000 | 7000 | 20300 | HomeImp | Other | 03.01.1900 | 0 | 0 | 50.8 | 5 | 9 | |
1 | 3000 | 8800 | HomeImp | Other | 02.01.1900 | 0 | 1 | 77.766.666.667 | 0 | 3 | ||
1 | 3000 | 33000 | HomeImp | Other | 01.01.1900 | 0 | 1 | 23. Mrz | 1 | 2 | ||
1 | 3000 | 119826 | 193500 | HomeImp | Other | 08.01.1900 | 0 | 0 | 13.003.335.846 | 0 | 27 | |
1 | 3000 | 20000 | 29750 | DebtCon | Other | 02.01.1900 | 0 | 0 | 18.706.666.667 | 0 | 12 | |
1 | 3000 | 14500 | HomeImp | Other | 03.01.1900 | 0 | 0 | 09. Mrz | 14 | 2 |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
It appears that you have provided a dataset with some missing values and you would like to apply binary classification and linear regression to the da...Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started