Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Fullness Experiment Part 1: in JAVA! a) design and implement a method height for BinarySearchTree that returns the height of the tree. b) Define the

Fullness Experiment Part 1: in JAVA!

a) design and implement a method height for BinarySearchTree that returns the height of the tree.

b) Define the fullness ratio of a binary tree to be the ratio between its minimum height and its height (given the number of nodes in the tree). For example, the tree in Figure 7.5a has a fullness ratio of 1.00 (its minimum height is 3 and its height is 3) and the tree in Figure 7.6c has a fullness ratio of 0.33 (its minimum height is 3 and its height is 9). Implement a method fRatio to be added to the BinarySearchTree class that returns the fullness ratio of the tree.

c) Create an application that generates 10 random trees, each with 1,000 nodes (random integers between 1 and 3,000). For each tree output its height, optimal height, and fullness ratio.

Binary Search and Binary Node below:

public class BinaryTreeNode> {

public BinaryTreeNode left; // the left child

public BinaryTreeNode right; // the right child

public T data; // the data in this node

public BinaryTreeNode() {

this(null, null, null);

}

public BinaryTreeNode(T theData) {

this(theData, null, null);

}

public BinaryTreeNode(T theData, BinaryTreeNode leftChild, BinaryTreeNode rightChild) {

data = theData;

left = leftChild;

right = rightChild;

}

public T getData() {

return data;

}

public BinaryTreeNode getLeft() {

return left;

}

public BinaryTreeNode getRight() {

return right;

}

public void setLeft(BinaryTreeNode newLeft) {

left = newLeft;

}

public void setRight(BinaryTreeNode newRight) {

right = newRight;

}

public void setData(T newData) {

data = newData;

}

public void preOrder() {

System.out.println(data);

if (left != null) {

left.preOrder();

}

if (right != null) {

right.preOrder();

}

}

public int height() {

int leftHeight = 0; // Height of the left subtree

int rightHeight = 0; // Height of the right subtree

int height = 0; // The height of this subtree

// If we have a left subtree, determine its height

if (left != null) {

leftHeight = left.height();

}

// If we have a right subtree, determine its height

if (right != null) {

rightHeight = right.height();

}

// The height of the tree rooted at this node is one more than the

// height of the 'taller' of its children.

if (leftHeight > rightHeight) {

height = 1 + leftHeight;

} else {

height = 1 + rightHeight;

}

// Return the answer

return height;

}

/**

* @param pathString

* @return the tree nodes in pre-order traversal

*/

public String toStringPreOrder(String pathString) {

String treeString = pathString + " : " + data + " ";

if (left != null) {

treeString += left.toStringPreOrder(pathString + "L");

}

if (right != null) {

treeString += right.toStringPreOrder(pathString + "R");

}

return treeString;

}

}

====================

import java.util.*;

public class BinarySearchTree> {

private BinaryTreeNode root;

public BinarySearchTree() {

root = null;

comparator = null;

}

public > boolean Search(Collection col ,T Target){

return true;

}

public static void main(String[] args) {

Integer[] a = { 1, 5, 2, 7, 4 };

BinarySearchTree bst = new BinarySearchTree();

for (Integer n : a)

bst.insert(n);

System.out.println("InOrder Traversal is");

bst.InorderTraversal();

System.out.println();

System.out.println("Preorder Traversal is");

bst.PreorderTraversal();

System.out.println();

System.out.println("Height is :" + bst.height());

System.out.println("Height is :" + bst.heightWithoutRecursion());

System.out.println("Left Count is: " + bst.LeafCount());

System.out.println("Is the element Present: " + bst.find(2));

System.out.println();

}

public int LeafCount() {

return LeafCount(root);

}

private int LeafCount(BinaryTreeNode root) {

if (root == null)

return 0;

else if (root.left == null && root.right == null)

return 1;

else

return LeafCount(root.left) + LeafCount(root.right);

}

private Comparator comparator;

private int compare(T x, T y) {

if (comparator == null)

return x.compareTo(y);

else

return comparator.compare(x, y);

}

public void insert(T data) {

root = insert(root, data);

}

private BinaryTreeNode insert(BinaryTreeNode root, T toInsert) {

if (root == null)

return new BinaryTreeNode(toInsert);

if (compare(toInsert, root.getData()) == 0)

return root;

if (compare(toInsert, root.getData()) <= 0)

root.left = insert(root.getLeft(), toInsert);

else

root.right = insert(root.right, toInsert);

return root;

}

public int getSizeUtil() {

return getSize(root);

}

public int getSize(BinaryTreeNode root) {

if (root == null)

return 0;

else

return 1 + getSize(root.getRight()) + getSize(root.getLeft());

}

public void SearchUtil(T key) {

List list = new ArrayList();

Search(root, key, list);

System.out.println(list.size());

}

public void Search(BinaryTreeNode root, T key, List list) {

if (root == null)

return;

if (root.data.compareTo(key) == 0) {

list.add(root.data);

} else if (root.data.compareTo(key) <= 0)

Search(root.getLeft(), key, list);

else

Search(root.getRight(), key, list);

}

public void InorderTraversal() {

inOrderHelper(root);

}

private void inOrderHelper(BinaryTreeNode root) {

if (root != null) {

inOrderHelper(root.getLeft());

System.out.print(root.getData() + " ");

inOrderHelper(root.getRight());

}

}

public int height() {

return height(root);

}

private int height(BinaryTreeNode root) {

if (root == null)

return -1;

else

return 1 + Math.max(height(root.left), height(root.right));

}

public int heightWithoutRecursion() {

return heightWithoutRecursion(root);

}

int heightWithoutRecursion(BinaryTreeNode node)

{

if (node == null)

return 0;

Queue q = new LinkedList();

q.add(node);

int height = -1;

while (1 == 1)

{

int nodeCount = q.size();

if (nodeCount == 0)

return height;

height++;

while (nodeCount > 0)

{

BinaryTreeNode newnode = q.peek();

q.remove();

if (newnode.left != null)

q.add(newnode.left);

if (newnode.right != null)

q.add(newnode.right);

nodeCount--;

}

}

}

public void PreorderTraversal() {

preOrderHelper(root);

}

private void preOrderHelper(BinaryTreeNode root) {

if (root != null) {

System.out.print(root.data + " ");

preOrderHelper(root.left);

preOrderHelper(root.right);

}

}

public boolean find(T key) {

return find(root, key);

}

private boolean find(BinaryTreeNode root, T key) {

if (root == null)

return false;

else if (compare(key, root.data) == 0)

return true;

else if (compare(key, root.data) < 0)

return find(root.left, key);

else

return find(root.right, key);

}

}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Data Science Project Ideas In Health Care Volume 1

Authors: Zemelak Goraga

1st Edition

B0CPX2RWPF, 979-8223791072

More Books

Students also viewed these Databases questions