Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

H. Consider the game known as Rock, Paper, Scissors. Most of you are familiar with this game. There are two players, player 1 and player

image text in transcribed
H. Consider the game known as Rock, Paper, Scissors. Most of you are familiar with this game. There are two players, player 1 and player 2. Simultaneously each player chooses either rock, paper or scissors. When player 1 and player 2 play the same strategy each wins zero. When player 1 plays paper and 2 plays rock, paper wraps up rock so player one wins 1 and player 2 wins -1. If player 1 plays scissors and player 2 plays paper, scissors cuts paper, hence, player 1 wins 1 and player two wins -1. If player one plays rock and player 2 plays scissors, rock breaks scissors and player one wins 1 and two wins -1. a. Is this a constant sum game? Is it is zero sum game? b. Show that R/P/S has no pure strategy Nash equilibrium by drawing arrows on the bimatrix. Do you think that the arrow method is useful for larger games (i.e.games with more players and more strategies)? c. Show R/P/S has no pure strategy Nash equilibrium using the underlining method. d. Show that the strategy profiles (R, R) and (S,P) are not Nash using the definition method. 2. Consider the 3-player game matching pennies. You can find the description of this game in the Coordination Game Lecture. a. Represent the 3-player game matching pennies in normal form. (Hint: you will need two matrices. One matrix for player 3 plays Heads and one matrix for player 3 plays Tails). Make sure that the top left hand cell in matrix 1 is labeled H for player 1 and H for player 2. This is so we are all looking at the same matrix. b. Show that 3-player matching pennies has 6 pure strategy Nash equilibria using the underling method. c. Show that (T, T, H) is Nash and (T, T, T) is not Nash using the definition method. 1 3. Three tennis players want to enter a tennis tournament. There is room left in the tournament for one doubles team and one singles player. Each player may apply for only one slot-a singles slot or a doubles slot. Each player knows there are two other applicants, but doesn't know who they are so there is no chance for communication. If one player applies for the singles slot, she gets it. If two players apply for the singles slot they cut cards and each has a 50% chance of getting it. if all three apply for the singles slot, each has a 33 1 3% chance of getting it. If one player applies for the doubles team, she doesn't play in the tournament. If two players apply for the doubles team, they are in. If three apply for the doubles team, they cut cards and each of the three has a 66 2 3% chance of getting into the tournament. a. Put the game in normal form. Make sure that the top left cell of matrix one where Player 3 plays Singles, is labled S for player 1 and S for player 2. This is so we are all all looking at the same picture. b. Find the pure strategy Nash equilibria using the underlining method. c. Show (S,S,S) is Nash using the definition method. Show (S, S, D) is not Nash using the definition method. d. What would you do if you were one of the players

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Economics And The Environment A Materials Balance Approach

Authors: Allen V Kneese, Robert U Ayres, Ralph C D'Arge

1st Edition

1317402251, 9781317402251

More Books

Students also viewed these Economics questions

Question

The fear of making a fool of oneself

Answered: 1 week ago

Question

Annoyance about a statement that has been made by somebody

Answered: 1 week ago