Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

HEY NEED THIS URGENTLY CAN ANYONE PLEASE MAKE A SENSITIVITY ANALYSIS REPORT FOR THIS AND CAN ANYON ETELL ME HOW TO DO IT ASWELL IN

image text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed

HEY NEED THIS URGENTLY CAN ANYONE PLEASE MAKE A SENSITIVITY ANALYSIS REPORT FOR THIS AND CAN ANYON ETELL ME HOW TO DO IT ASWELL IN STEPS.

S A \& B products \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 7 \\ \hline \end{tabular} Note: SUMPRODUCT(Col1, Col2) is a easier way to multiply two rows or two columns Standard Linear Programming: Maximixe Subject to 9A+7B 12A+4B=0 B>=0 A \& B products (a) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 7 \\ \hline \end{tabular} (b) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 40 & 40 \\ \hline Total Hours & 40 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits ($) & 9 & 7 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Product A & 2 \\ \hline Product B & 4 \\ \hline & \\ \hline Maximized profits & \\ \hline \end{tabular} (c-1) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 3 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits ($) & 9 & 15 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 15 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Product A & 4 \\ \hline Product B & 3 \\ \hline \end{tabular} (c-2) \begin{tabular}{|l|c|} \hline Product A & 4 \\ \hline Product B & 3 \\ \hline \end{tabular} Maximized profits 96.00 Please run sensitivity analysis on P10 and enter the results (changes in coefficients of the objective functio rwin textile mills b. Identify the sensitivity ranges for the objective function coefficients and for the constraint quantity values Then explain the sensitivity range for the demand for corduroy. c. \begin{tabular}{|l|c|c|c|c|c|} \hline \multirow{2}{*}{ Aluminum Grade } & \multicolumn{3}{|c|}{ Mill } & \multicolumn{2}{c|}{} \\ \cline { 2 - 5 } & 1 & 2 & \multicolumn{3}{|c|}{ constraints } \\ \hline High & 6 & 2 & 24 & >= & 20 \\ \hline Medium & 2 & 2 & 8 & >= & 8 \\ \hline Low & 4 & 10 & 16 & >= & 5 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline \multirow{2}{*}{ Aluminum Grade } & \multicolumn{2}{|c|}{ Mill } \\ \cline { 2 - 3 } & 1 & 2 \\ \hline Cost ($) & 6000 & 7000 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Mill \#1 & 4 \\ \hline Mill \#2 & 0 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Minimize Cost (\$) & 24000 \\ \hline \end{tabular} Burger Doodle franchise \begin{tabular}{|c|c|c|} \hline & Sausage & Ham \\ \hline Profits (\$) & 0.6 & 0.5 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Sausage & 300 \\ \hline Ham & 100 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Maximize Profits & 230 \\ \hline \end{tabular} S A \& B products \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 7 \\ \hline \end{tabular} Note: SUMPRODUCT(Col1, Col2) is a easier way to multiply two rows or two columns Standard Linear Programming: Maximixe Subject to 9A+7B 12A+4B=0 B>=0 A \& B products (a) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 7 \\ \hline \end{tabular} (b) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 8 \\ \hline & 40 & 40 \\ \hline Total Hours & 40 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits ($) & 9 & 7 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Product A & 2 \\ \hline Product B & 4 \\ \hline & \\ \hline Maximized profits & \\ \hline \end{tabular} (c-1) \begin{tabular}{|l|c|c|} \hline & \multicolumn{2}{|c|}{ Hours/ Unit } \\ \hline Product & Line 1 & Line2 \\ \hline A & 12 & 4 \\ \hline B & 4 & 3 \\ \hline & 60 & 40 \\ \hline Total Hours & 60 & 40 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits ($) & 9 & 15 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline & A & B \\ \hline Profits (\$) & 9 & 15 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Product A & 4 \\ \hline Product B & 3 \\ \hline \end{tabular} (c-2) \begin{tabular}{|l|c|} \hline Product A & 4 \\ \hline Product B & 3 \\ \hline \end{tabular} Maximized profits 96.00 Please run sensitivity analysis on P10 and enter the results (changes in coefficients of the objective functio rwin textile mills b. Identify the sensitivity ranges for the objective function coefficients and for the constraint quantity values Then explain the sensitivity range for the demand for corduroy. c. \begin{tabular}{|l|c|c|c|c|c|} \hline \multirow{2}{*}{ Aluminum Grade } & \multicolumn{3}{|c|}{ Mill } & \multicolumn{2}{c|}{} \\ \cline { 2 - 5 } & 1 & 2 & \multicolumn{3}{|c|}{ constraints } \\ \hline High & 6 & 2 & 24 & >= & 20 \\ \hline Medium & 2 & 2 & 8 & >= & 8 \\ \hline Low & 4 & 10 & 16 & >= & 5 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|} \hline \multirow{2}{*}{ Aluminum Grade } & \multicolumn{2}{|c|}{ Mill } \\ \cline { 2 - 3 } & 1 & 2 \\ \hline Cost ($) & 6000 & 7000 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Mill \#1 & 4 \\ \hline Mill \#2 & 0 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Minimize Cost (\$) & 24000 \\ \hline \end{tabular} Burger Doodle franchise \begin{tabular}{|c|c|c|} \hline & Sausage & Ham \\ \hline Profits (\$) & 0.6 & 0.5 \\ \hline \end{tabular} \begin{tabular}{|l|l|} \hline Sausage & 300 \\ \hline Ham & 100 \\ \hline \end{tabular} \begin{tabular}{|l|c|} \hline Maximize Profits & 230 \\ \hline \end{tabular}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Managerial Accounting

Authors: Peter Clarke

2nd Edition

9781907214240

More Books

Students also viewed these Accounting questions

Question

Show the steps and intermediates in the synthesis of Leu-Ala-Phe

Answered: 1 week ago

Question

1. Use questioning to check your understanding.

Answered: 1 week ago

Question

How does interconnectivity change how we live and work?

Answered: 1 week ago