Question
Hi tutor, can you please help me to solve that question and show all the work? Let f (x) be a function on (0, 100),
Hi tutor, can you please help me to solve that question and show all the work?
Let f (x) be a function on (0, 100), having derivative f (x) and a primitive function F (x) = x f (t)dt 0
defined on the same domain. For all x (0,100), it is known that f(x) 0 and f(x) 0.
(a)we learned that f(x) 0 for all x (0,100) implies that f(x) is decreasing. Prove this statement by using the properties of definite integrals. In other words, for all a,b (0,100), prove that f(a) f(b) if a < b.
(b)we also learned that F(x) = f(x) 0 for all x (0,100) implies that F(x) is concave. Prove this statement by using the properties of definite integrals and results from (a). In other words, for all a, b (0, 100)
prove that : F ((a+b)/2) 1/2 (F(a)+F(b))
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started