Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

[Hurry!] need the answer within 1 hour Python ! Python ! Python! x y 3.384245 -1.44872 1.972033 6.061925 -1.78357 10.65943 -3.0371 10.32856 2.377075 1.707145 3.780077

[Hurry!] need the answer within 1 hour

Python ! Python ! Python!

image text in transcribed

x y 3.384245 -1.44872 1.972033 6.061925 -1.78357 10.65943 -3.0371 10.32856 2.377075 1.707145 3.780077 -1.63387 -2.39031 11.43023 3.755939 1.298143 2.589843 -2.28246 -2.61112 8.449307 0.109553 4.810749 1.792507 5.640885 3.620511 1.226724 7.418509 -1.77009 3.103627 -1.4017 5.024449 0.04415 4.428867 0.69794 0.911753 4.594157 1.573154 1.074919 8.115184 -0.78544 0.049985 4.273057 7.283901 -0.15663 4.869046 1.261363 -2.12998 7.442359 7.635893 -0.57495 3.140295 2.792074 4.569477 -3.15145 1.966886 3.785856 6.942742 -1.72718 7.226266 -1.48173 3.459409 -1.1859 0.072375 6.779604 4.826682 -1.06612 -0.31675 5.19 0.731025 2.51654 -1.50762 9.89038 0.346024 1.41254 -2.35856 9.579441 7.910941 -1.55616 0.760427 2.473889 4.545765 1.029484 6.933051 -1.46244 4.92578 -0.02597 0.018143 2.356408 0.27458 5.926619 0.899098 4.042818 0.404513 5.458474 2.875828 -2.00396 3.404957 -1.29783 3.213927 -1.84646 -2.37165 9.432695 8.475698 -2.40548 3.827395 -1.63566 8.145284 -2.60674 0.286811 6.306405 1.261894 -0.33132 6.542281 -1.531 3.473682 -0.97367 -0.88589 6.197526 7.250918 -2.14972 0.432103 5.625184 0.236513 1.459464 0.023214 2.372073 7.838477 -0.68949 -4.52291 10.02769 -1.46945 6.697059 -2.25601 9.16917 1.071408 6.118307 7.8826 -0.59664 4.146984 -2.08054 2.98862 -1.10779 7.185066 -1.82394 1.249177 0.862261 8.320516 -3.37559 0.999502 5.841403 -2.42326 9.973921 1.152646 2.791955 -3.46469 8.899779 6.888356 -0.62965 4.625379 1.0778 0.718554 5.306456 -1.88866 10.48392 1.811191 -2.10738 2.922761 0.325753 -0.15256 5.656416 1.19222 5.864105 6.578961 -0.7336 0.366881 1.976506 -0.13328 4.489526 2.268338 2.000674 1.111304 1.020982 1.26914 3.938831 -0.38896 6.005285 0.033718 2.956576 -0.88106 1.540373 1.707761 6.583895 0.654955 5.965644 0.735144 5.251265 -1.85902 5.52059 0.307239 2.035807 3.710055 1.667819 -1.29003 8.329929 0.594166 3.943162 5.488199 2.514624 2.533061 -2.02937 3.250722 -1.96119 0.939396 1.171761 7.60595 -1.28199 0.699808 -1.20767 5.079305 -0.04012 9.163101 -1.79546 0.819143 2.279207 1.958772 2.293858 8.107432 -0.50278 3.22558 2.482791 6.685227 -1.85957 -2.21752 9.569915 -0.2023 1.772072 0.70616 1.759922 -0.3959 2.567373 5.858684 0.037771 -1.2312 9.989463 7.749616 -1.29756 -0.03681 2.023841 0.773656 2.813069 -1.93437 10.17613 2.790224 -0.97189 8.119845 -2.66309 6.884304 -0.65051 2.549306 -0.9938 3.068905 -3.07593 2.641097 -2.29166 1.577079 -1.77411 7.966842 0.070252 2.727545 -2.00476 -2.51794 9.025964 -2.41948 8.647152 -2.11525 8.817806 6.657992 -2.03666 3.959359 -0.97505 2.132075 1.463617 1.616175 5.29208 -2.96566 8.504852 8.196208 -2.65297 1.416276 6.233453 4.674013 -0.32789 -0.84735 5.990557 -0.75066 5.746109 -2.07932 8.496372 4.159847 1.919294 -3.11423 8.85924 5.147349 0.119668 8.331747 -1.63198 -2.26856 9.913707 3.359282 0.567626 0.489992 5.672183 -2.89895 9.052719 8.539603 -1.41378 4.013594 0.468812 0.542222 7.443506 4.613309 0.259897 2.66242 -1.41334 -2.79618 8.995295 0.105852 4.70973 -1.86539 10.01686 3.229957 0.037826 5.732484 0.98467 -0.9555 10.48925 4.133595 -0.31485 5.864408 -0.38875 3.886798 -2.36311 1.635429 2.546531 8.230529 -1.20866 -3.10286 9.639188 3.705823 0.645375 0.911647 1.690842 1.405689 2.188606 4.345344 0.250431 0.934213 5.660941 2.968492 -2.75954 2.71915 0.266041 -1.53565 10.66435 8.517502 -0.07499 2.06987 0.316229 2.67965 -1.63321 3.982363 1.118211 7.51958 -1.40078 -0.33815 1.255095 5.281743 0.653729 8.590069 -1.81202 -4.45566 9.963332 1.653247 3.961783 4.139661 2.171533 4.570727 1.331361 4.061945 0.666409 3.406186 -2.79325 0.929133 6.26915 8.748342 -0.56192 3.953328 0.568548 0.881287 6.115925 4.016145 0.438302 1.223633 2.593103 7.65732 -0.79442 9.640839 -1.37439 -2.17574 9.204511 2.441289 1.656842 7.960823 -1.54001 4.646453 0.953724 0.777956 1.499613 -3.25871 8.957072 1.744743 -2.1776 -1.67497 8.429552 4.34872 0.727028 0.768381 5.079006 7.122728 -1.02864 -2.10789 9.643759 1.791277 1.32501 0.201388 5.391053 0.923128 1.515801 7.040961 -1.0239 4.406974 1.559543 3.167773 0.137428 -2.39345 8.458822 7.453081 -2.72271 7.611176 -1.60099 1.840508 -2.59431 2.600065 -2.03685 3.315927 1.887791 -0.997 4.768731 3.221204 -1.54052 1.151438 2.783411 7.472751 -0.39345 2.512429 -2.47799 7.189341 -1.3963 5.265691 1.960503 -2.74256 8.746413 -2.1861 8.921904 2.425716 1.366287 4.606317 1.100228 -0.13308 6.028195 5.028623 2.470317 2.995802 -1.77561 7.964203 -1.2608 3.074792 1.3488 -2.15476 9.236692 3.781577 -0.60504 -4.09232 8.898164 0.629783 6.814397 -2.10967 9.968426 0.376843 2.740732 5.820499 2.166872 3.303067 -1.89778 -0.28933 5.658868 -0.4647 4.440616 -2.76273 7.66013 1.484362 5.729658 7.017455 -3.05271 0.528396 1.002542 2.884077 0.280543 1.43881 1.546591 6.864198 -1.79853 -2.23219 7.597573 1.556467 2.6727 2.523226 -2.66615 0.363823 6.588475 4.401127 1.5851 5.085099 1.14289 -0.71433 9.544379 0.967705 2.814804 -2.67062 8.546245 -2.32694 9.930524 4.15404 1.012877 -3.58538 7.967148 1.329063 1.439335 4.244387 -2.57213 3.542841 -2.45185 6.510088 -1.21735 7.585626 -2.17414 5.479274 2.202493 1.421875 2.934995 -0.38398 2.555453 1.151218 3.005691 1.539629 1.840865 0.435027 5.090376 -2.51854 10.15033 2.457252 -1.11005 1.442939 1.227873 3.840708 0.279632 3.73402 -1.61534 2.544747 -0.89784 2.824999 -1.13191 -0.40121 8.871002 8.120494 -0.63493 1.205864 4.922659 0.547408 1.137293 2.60512 -2.04883 2.37374 -1.62144 0.22283 5.526784 -0.03136 4.75616 -1.29275 10.15348

#Please identify the suitable number of cluster for the given dataset #Please submit the entire segment (a nesipynb file) of this code/result #Please write the name and student ID here: to Canvas. Add comment to indicate the number of cluster imatplotlib inline import matplotlib. pyplot as plt import seaborn as sns: sns. set import numpy as np import pandas as pd from sklearn. cluster import Keans # for plot styling *****Please Read The Provided Dataset. *** You need to add your code here #DIY Read your data here first (df is the variable of the data) print(Thismisakte four datasetim.df.head, x=dfl'x') y=dfl'y'] print('x is',x) print('y is',y) #DIY please do the clusting here #DIY please show your result

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Driven Web Sites

Authors: Joline Morrison, Mike Morrison

2nd Edition

? 061906448X, 978-0619064488

Students also viewed these Databases questions

Question

How does a secured bond differ from an unsecured bond?

Answered: 1 week ago

Question

What is the Definition for Third Normal Form?

Answered: 1 week ago

Question

Provide two examples of a One-To-Many relationship.

Answered: 1 week ago