Question
I need to implement the functions convert_coo_to_csr(row_ind, col_ind, val, m, n, nnz, &csr_row_ptr, &csr_col_ind, &csr_vals); and spmv(csr_row_ptr, csr_col_ind, csr_vals, m, n, nnz, vector_x, res); Code
I need to implement the functions convert_coo_to_csr(row_ind, col_ind, val, m, n, nnz, &csr_row_ptr, &csr_col_ind, &csr_vals); and spmv(csr_row_ptr, csr_col_ind, csr_vals, m, n, nnz, vector_x, res);
Code to copy:
#include
#define MAX_FILENAME_SIZE 256 #define MAX_NUM_LENGTH 100
/* This function checks the number of input parameters to the program to make sure it is correct. If the number of input parameters is incorrect, it prints out a message on how to properly use the program. input parameters: int argc char** argv return parameters: none */ void usage(int argc, char** argv) { if(argc < 4) { fprintf(stderr, "usage: %s ", argv[0]); exit(EXIT_FAILURE); } }
/* This function reads information about a sparse matrix using the mm_read_banner() function and prints out information using the print_matrix_info() function. input parameters: char* fileName name of the sparse matrix file return paramters: none */ void read_info(char* fileName) { FILE* fp; MM_typecode matcode; int m; int n; int nnz;
if((fp = fopen(fileName, "r")) == NULL) { fprintf(stderr, "Error opening file: %s ", fileName); exit(EXIT_FAILURE); }
if(mm_read_banner(fp, &matcode) != 0) { fprintf(stderr, "Error processing Matrix Market banner. "); exit(EXIT_FAILURE); }
if(mm_read_mtx_crd_size(fp, &m, &n, &nnz) != 0) { fprintf(stderr, "Error reading size. "); exit(EXIT_FAILURE); }
print_matrix_info(fileName, matcode, m, n, nnz);
fclose(fp); }
/* This function coverts a sparse matrix stored in COO format to CSR. input parameters: these are 'consumed' by this function int* row_ind row index for the non-zeros in COO int* col_ind column index for the non-zeros in COO double* val values for the non-zeros in COO int m # of rows in the matrix int n # of columns in the matrix int nnz # of non-zeros in the matrix
these are 'produced' by this function unsigned int** csr_row_ptr row pointers to csr_col_ind and csr_vals in CSR unsigned int** csr_col_ind column index for the non-zeros in CSR double** csr_vals values for the non-zeros in CSR return parameters: none */ void convert_coo_to_csr(int* row_ind, int* col_ind, double* val, int m, int n, int nnz, unsigned int** csr_row_ptr, unsigned int** csr_col_ind, double** csr_vals)
{ }
/* This function reads in a vector from a text file, similar in format to the Matrix Market format. The first line contains the number of elements in the vector. The rest of the file contains the values in the vector, one element per row. input parameters: char* fileName Name of the file containing the vector double** vector Array that will contain the vector int* vecSize Integer variable that will contain the size of the vector return parameters: none */ void read_vector(char* fileName, double** vector, int* vecSize) { FILE* fp = fopen(fileName, "r"); assert(fp); char line[MAX_NUM_LENGTH]; fgets(line, MAX_NUM_LENGTH, fp); fclose(fp);
unsigned int vector_size = atoi(line); double* vector_ = (double*) malloc(sizeof(double) * vector_size);
fp = fopen(fileName, "r"); assert(fp); // first read the first line to get the # elements fgets(line, MAX_NUM_LENGTH, fp);
unsigned int index = 0; while(fgets(line, MAX_NUM_LENGTH, fp) != NULL) { vector_[index] = atof(line); index++; }
fclose(fp); assert(index == vector_size);
*vector = vector_; *vecSize = vector_size; }
/* This function calculates the sparse matrix-vector multiply from the matrix in CSR format (i.e., csr_row_ptr, csr_col_ind, and csr_vals) and the vector in an array (i.e., vector_x). It stores the result in another array (i.e., res) input parameters: these are 'consumed' by this function unsigned int** csr_row_ptr row pointers to csr_col_ind and csr_vals in CSR unsigned int** csr_col_ind column index for the non-zeros in CSR double** csr_vals values for the non-zeros in CSR int m # of rows in the matrix int n # of columns in the matrix int nnz # of non-zeros in the matrix double vector_x input vector
these are 'produced' by this function double* res Result of SpMV. res = A * x, where A is stored in CSR format and x is stored in vector_x return parameters: none
*/ void spmv(unsigned int* csr_row_ptr, unsigned int* csr_col_ind, double* csr_vals, int m, int n, int nnz, double* vector_x, double* res) { }
/* This function stores a vector in a text file, similar in format to the Matrix Market format. The first line contains the number of elements in the vector. The rest of the file contains the values in the vector, one element per row. input parameters: char* fileName Name of the file that will contain the vector double** res Array that contains the vector int* m Integer variable that contains the size of the vector return parameters: none */ void store_result(char *fileName, double* res, int m) { FILE* fp = fopen(fileName, "w"); assert(fp);
fprintf(fp, "%d ", m); for(int i = 0; i < m; i++) { fprintf(fp, "%0.20f ", res[i]); }
fclose(fp); }
/* This program first reads in a sparse matrix stored in matrix market format (mtx). It generates a set of arrays - row_ind, col_ind, and val, which stores the row/column index and the value for the non-zero elements in the matrix, respectively. This is also known as the co-ordinate format.
Then, it should convert this matrix stored in co-ordinate format to the compressed sparse row (CSR) format.
Then, finally it should use the CSR format to multiply the matrix with a vector (i.e., calculate the sparse matrix vector multiply, or SpMV).
The resulting vector should then be stored in a file, one value per line, whose name was specified as an input to the program. */ int main(int argc, char** argv) { usage(argc, argv);
// Read the sparse matrix file name char matrixName[MAX_FILENAME_SIZE]; strcpy(matrixName, argv[1]); read_info(matrixName);
// Read the sparse matrix and store it in row_ind, col_ind, and val, // also known as co-ordinate format. int ret; MM_typecode matcode; int m; int n; int nnz; int *row_ind; int *col_ind; double *val;
fprintf(stdout, "Matrix file name: %s ... ", matrixName); /* mm_read_mtx_crs is a fucntion provided in mmio.c that reads in a sparse matrix in Matrix Market format and stores the matrix in COO format. m - # of rows n - # of columns nnz - number of non-zeroes row_ind - array of row indices for the non-zeros col_ind - array of column indices for the non-zeros val - array of values for the non-nzeros matcode - return value for the function
The first non-zero's row and column indices are stored in row_ind[0], and col_ind[0], respectively, and the value of the non-zero is stored in va[0]. Therefore, the size of these arrays are equal to nnz. */ ret = mm_read_mtx_crd(matrixName, &m, &n, &nnz, &row_ind, &col_ind, &val, &matcode); check_mm_ret(ret);
// Convert co-ordinate format to CSR format fprintf(stdout, "Converting COO to CSR..."); unsigned int* csr_row_ptr = NULL; unsigned int* csr_col_ind = NULL; double* csr_vals = NULL; convert_coo_to_csr(row_ind, col_ind, val, m, n, nnz, &csr_row_ptr, &csr_col_ind, &csr_vals); fprintf(stdout, "done ");
// Load the vector file char vectorName[MAX_FILENAME_SIZE]; strcpy(vectorName, argv[2]); fprintf(stdout, "Vector file name: %s ... ", vectorName); double* vector_x; unsigned int vector_size; read_vector(vectorName, &vector_x, &vector_size); assert(n == vector_size); fprintf(stdout, "file loaded ");
// Calculate SpMV double *res = (double*) malloc(sizeof(double) * m);; assert(res); fprintf(stdout, "Calculating SpMV ... "); spmv(csr_row_ptr, csr_col_ind, csr_vals, m, n, nnz, vector_x, res); fprintf(stdout, "done ");
// Store the calculated vector in a file, one element per line. char resName[MAX_FILENAME_SIZE]; strcpy(resName, argv[3]); fprintf(stdout, "Result file name: %s ... ", resName); store_result(resName, res, m); fprintf(stdout, "file saved ");
// Free memory free(csr_row_ptr); free(csr_col_ind); free(csr_vals);
free(vector_x); free(res);
free(row_ind); free(col_ind); free(val);
return 0; }
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started