Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

If a matrix A has dimension nn and has n linearly independent eigenvectors, it is diagonalizable. This means there exists a matrix P such that

If a matrix A has dimension nn and has n linearly independent eigenvectors, it is diagonalizable. This means there exists a matrix P such that P 1AP = D, where D is a diagonal matrix, and the diagonal is made up of the eigenvalues of A. P is constructed by taking the eigenvectors of A and using them as the columns of P. Your task is to write a program (function) that does the following Finds the eigenvectors of an input matrix A Checks if the eigenvectors are linearly independent (think determinant) if they are not linearly depended, exit the program & display error Displays P, P 1 and D (if possible) Shows that P DP 1 = A Show that your program works with a 33 matrix A

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Database Design Application Development And Administration

Authors: Michael V. Mannino

3rd Edition

0071107010, 978-0071107013

More Books

Students also viewed these Databases questions