Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.manifold import TSNE from IPython.core.interactiveshell import

import pandas as pd

import matplotlib import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.manifold import TSNE from IPython.core.interactiveshell import InteractiveShell import warnings from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE warnings.filterwarnings('ignore') pd.options.display.max_columns = None

def fix_header(data): new_header = data.iloc[0] # take the first row for the header data = data[1:] # take the data without the header row data.rows = new_header # set the header row as the df header data.rename(columns={'default payment next month':'DEFAULTER'}, inplace=True) # change column name return data

train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') train['Type'] = 'train' test['Type'] = 'test' train.drop(['Type'],axis = 1, inplace=True) test.drop(['Type'],axis = 1, inplace=True) train = train.astype(float) test = test.astype(float) df = pd.concat([train,test],axis=0) df.rename(columns={'default payment next month':'DEFAULTER'}, inplace=True)

df2 = train[train.DEFAULTER == 0].sample(n = 1000) df3 = train[train.DEFAULTER == 1].sample(n = 1000) df4 = pd.concat([df2, df3], axis = 0)

#Scale features to improve the training ability of TSNE. standard_scaler = StandardScaler() df4_std = standard_scaler.fit_transform(df4)

#Set y equal to the target values. y = df4.DEFAULTER

tsne = TSNE(n_components=2, random_state=0) x_test_2d = tsne.fit_transform(df4_std)

#Build the scatter plot with the two types of transactions. color_map = {0:'red', 1:'blue'} plt.figure() for idx, cl in enumerate(np.unique(y)): plt.scatter(x = x_test_2d[y==cl,0], y = x_test_2d[y==cl,1], c = color_map[idx], label = cl) plt.xlabel('X in t-SNE') plt.ylabel('Y in t-SNE') plt.legend(loc='upper right') plt.title('t-SNE visualization of train data') plt.show()

My python code is above and this is the error that comes out. Even thought defaulter is in my columns when i check, it does come out. how to fix this error?
In[13]: df.columns

Out[13]:

Index(['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'DEFAULTER', 'Type'], dtype='object')
 AttributeError: 'DataFrame' object has no attribute 'DEFAULTER'

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Oracle Autonomous Database In Enterprise Architecture

Authors: Bal Mukund Sharma, Krishnakumar KM, Rashmi Panda

1st Edition

1801072248, 978-1801072243

More Books

Students also viewed these Databases questions

Question

In an Excel Pivot Table, how is a Fact/Measure Column repeated?

Answered: 1 week ago