Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.decomposition import FactorAnalysis from

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import FactorAnalysis
from sklearn.impute import SimpleImputer
# Load the dataset
# Assuming you have the dataset in CSV format named 'data.csv'
df = pd.read_csv('data.csv')
# Selecting only numerical columns for factor analysis
numerical_columns = df.select_dtypes(include=[np.number]).columns.tolist()
df_numerical = df[numerical_columns]
# Handling missing values by imputing with the mean
imputer = SimpleImputer(strategy='mean')
df_numerical_imputed = imputer.fit_transform(df_numerical)
# Standardizing the data
scaler = StandardScaler()
df_numerical_scaled = scaler.fit_transform(df_numerical_imputed)
# Performing factor analysis
fa = FactorAnalysis(n_components=5, random_state=0)
fa_components = fa.fit_transform(df_numerical_scaled)
# Creating a DataFrame with the factor analysis components
fa_df = pd.DataFrame(fa_components, columns=[f'Factor{i+1}' for i in range(fa.n_components)])
# Plotting the factor analysis results
plt.figure(figsize=(10,7))
sns.heatmap(pd.DataFrame(fa.components_, columns=numerical_columns), annot=True, cmap='coolwarm')
plt.title('Factor Analysis Components')
plt.xlabel('Features')
plt.ylabel('Factors')
plt.show()
# Output the factor analysis components
print("Factor Analysis Components:")
print(fa_df.head())
As for the above code, please add:
plt.xlabel('Variables')
plt.ylabel('Loadings')
plt.title('Factor Loadings Before Rotation')
plt.xticks(np.arange(len(X_factor.columns)), X_factor.columns, rotation=45, ha="right")
plt.legend()
plt.tight_layout()
plt.show()
# Bar plot for factor loadings after rotation
plt.xlabel('Variables')
plt.ylabel('Loadings')
plt.title('Factor Loadings After Rotation')
plt.xticks(np.arange(len(X_factor.columns)), X_factor.columns, rotation=45, ha="right")
plt.legend()
plt.tight_layout()
plt.show()
Please scale the data, and add some formulas to the code to plot the Factor Loadings Before Rotation and Factor Loadings After Rotation. Thank you very much!:)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions