Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

In the late 90s it was observed that the relative price of equipment (capital) has declined at an average annual rate of more than 3

In the late 90s it was observed that the relative price of equipment (capital) has declined at an average annual rate of more than 3 percent. There has also been a negative correlation (-0.46) between the relative price of new equipment and new equipment investment. This can be interpreted as evidence that there has been significant technological change in the production of new equipment. Technological advances have made equipment less expensive, triggering increases in the accumulation of equipment both in the short and long run. Concrete examples in support of this interpretation abound: new and more powerful computers, faster and more efficient means of telecommunication and transportation, robotization of assembly lines, and so on. In this problem we are going to extend the Solow Growth Model to allow for such investment specific technological progress. Start with the standard Solow model with population growth and assume for simplicity that the production function is Cobb-Douglas: Yt = Kt L1t , where the population growth rate is deltaLt/Lt= n. Similarly, just as in the basic model, assume that investment and consumption are constant fractions of output It = sYt and Ct = (1 s)Yt. However, assume that the relationship between investment and capital accumulation is modified to:

Kt+1 Kt = qtIt Kt

where the variable qt represents the level of technology in the production of capital equipment and grows at an exogenously given rate , i.e. deltaqt / qt= . Intuitively, when qt is high, the same investment expenditure translates into a greater increase in the capital stock. (Note: another way to interpret qt is as the inverse of the relative price between machinery and output: when qt is high, machinery is relatively cheaper). (a) Transform the model (the production function, the equations for consumption and investment, and the capital accumulation equation) in per-worker form.

c) Suppose that capital per worker kt grows at a constant rate (we do not know that yet, but we will make a guess). Divide the capital accumulation equation by kt and use this assumption to prove that qtk1t has to be constant over time.

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

New Products Management

Authors: C Merle Crawford

12th Edition

1260512010, 9781260512014

More Books

Students also viewed these Economics questions

Question

Explain briefly the relationship between Bill prices and yields.

Answered: 1 week ago