Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

In this lab, you will be implementing AVL trees. The point is just to fully implement an AVL tree that accepts a Data class as

In this lab, you will be implementing AVL trees. The point is just to fully implement an AVL tree that accepts a Data class as its type (it is a template class). The Data class DoubleData defines a method to compare to other DoubleData objects, which you should use when comparing those objects. AVLTree is a template class, so all the code is going in the header file again.

---------------------------------------------------------------------------------------------

#ifndef AVLTREE_H

#define AVLTREE_H

#include "Data.h"

template

class AVLTree {

private:

struct AVLNode {

AVLNode* leftChild;

AVLNode* rightChild;

T* data;

int duplicates; // used if there are duplicate values in the tree

// instead of changing rotation rules

int height;

AVLNode () : // default constructor

leftChild {nullptr},

rightChild {nullptr},

data {nullptr},

duplicates {0},

height {0} {};

~AVLNode () = default;

AVLNode (T& value) :

leftChild {nullptr},

rightChild {nullptr},

duplicates {0},

height {0} {

data = new T{value};

};

AVLNode (T&& value):

leftChild {nullptr},

rightChild {nullptr},

duplicates {0},

height {0} {

data = new T{value};

}

AVLNode (T& value, AVLNode* left, AVLNode* right) :

leftChild {left},

rightChild {right},

duplicates {0},

height {0} {

data = new T{value};

};

AVLNode (T&& value, AVLNode* left, AVLNode* right) :

leftChild {left},

rightChild {right},

duplicates {0},

height {0} {

data = new T{value};

}

};

AVLNode* root;

// accessors -------------------------------------------------------------

// will return the height of a given AVLNode*. Look at the definition for

// height. -1 if the tree is empty, or max height of children + 1.

// Must use recursion, since it counts leaves-up and we start traversals

// at root.

int getHeight(AVLNode* node) const {

// CODE HERE

return 0; // PLACEHOLDER FOR COMPILATION

}

// returns the depth from the current subtree (node is subroot)

// must use recursion.

int getDepthAux(const T& value, AVLNode* node) const {

// CODE HERE

return 0; // PLACEHOLDER

}

// driver function for getDepthAux(T&,AVLNode*), which does the recursion.

// getDepth(T&,AVLNode*) does an extra check for node not found in tree.

int getDepth(const T& value, AVLNode* node) const {

if (!findNode(value, node)){

return -1; // return -1 if node does not exist in tree

} else {

return getDepthAux(value, node);

}

}

// returns the AVLNode* that points to the node containing the

// parameter value in its data member.

// the node parameter is the root of the current subtree.

// Must use recursion.

AVLNode* findNode(const T& value, AVLNode* node) const {

// CODE HERE

return nullptr; // PLACEHOLDER

}

// returns the AVLNode* that points to the node containing the

// parameter value in its data member.

AVLNode* findNode(const T& value) const {

return findNode(value, root);

}

// method to clone a subtree and return it.

AVLNode* clone (AVLNode* node) const {

if (!node){

return nullptr;

} else {

AVLNode* temp = new AVLNode (*node->data,

clone(node->leftChild),

clone(node->rightChild));

temp->duplicates = node->duplicates;

temp->height = getHeight(node);

return temp;

}

}

// Possibly several functions to be used by printing traversal functions

// (below). These functions may need to know what the last leaf in a

// subtree is to print nicely (by my standards, anyway).

// CODE HERE

// should print the tree in a preorder traversal

void printPreorder(AVLNode* node) const {

// CODE HERE

}

// should print the tree in an inorder traversal

void printInorder(AVLNode* node) const {

// CODE HERE

}

// should print the tree in a postorder traversal

void printPostorder(AVLNode* node) const {

// CODE HERE

}

// mutators ------------------------------------------------------------

// inserts a new value into the given subtree with node as the root.

// If the value already exists, just incrememnt the duplicates counter.

// Else, create memory for it and place pointers appropriately.

// Must use recursion.

void insert(T& value, AVLNode* & node){

// CODE HERE

}

// will balance the tree with node as the offending root, like

// alpha in our class discussions. Should call onf of the rotate functions.

// Don't forget to set the height at the end!

void balance(AVLNode* & node){

// CODE HERE

}

// Rotate binary tree node with left child, i.e. a single rotation

// for case 1. Update the heights, and set new root.

void rotateLeft(AVLNode*& node){

// CODE HERE

}

// Rotate binary tree node with right child, i.e. a single rotation

// for case 4. Update the heights, and set new root.

void rotateRight(AVLNode*& node){

// CODE HERE

}

// Double rotate binary tree node: first left child with its right

// child, then subroot with its new left child (was grandchild previously).

// I.e. rotation case 2. Update the heights, and set new root.

void rotateDoubleLeft(AVLNode*& node){

// CODE HERE

}

// Double rotate binary tree node: first left child with its right

// child, then subroot with its new left child (was grandchild previously).

// I.e. rotation case 2. Update the heights, and set new root.

void rotateDoubleRight(AVLNode*& node){

// CODE HERE

}

// removes a given value from the tree. If the Node containing the value

// has duplicates, decrement the duplicates. Else deallocate the memory and

// recursively call remove to fix the tree, as discussed in class.

void remove(T& value, AVLNode*& node){

// CODE HERE

}

// private function to recursively empty

void empty(AVLNode* node){

// CODE HERE

}

public:

AVLTree():

root {nullptr} {};

~AVLTree(){

empty();

}

// copy constructor: should copy all of the data from the other tree

// into this tree.

AVLTree(const AVLTree& other){

root = clone(other.root);

}

// accessors --------------------------------------------------------

int getHeight() const {

return getHeight(root);

}

// searches the tree for a value. If it is found, the height

// is returned. If not, then -1 is returned.

int getHeight(const T& value) const {

AVLNode* node = findNode(value);

return node ? node->height : -1; // ternary operator

}

// returns the depth for the whole tree. should be 0 if the

// tree is nonempty, and -1 if it is empty.

int getDepth() const {

if (root){

return 0;

} else {

return -1;

}

}

// returns the depth for a given value.

// should be -1 if tree is empty, or the number of steps

// down from root node if not.

int getDepth(T& value) const {

if (!root){

return -1;

} else {

return getDepth(value, root);

}

}

// will return the balance factor of a value in the tree.

// if the value does not exist, return -128 (the lowest value for

// a 1-byte char). If it does exist, return the balance factor.

char getBalanceFactor(T& value) const {

// CODE HERE

return 0; // PLACEHOLDER FOR COMPILATION

}

// driver function to call the private preorder traversal

void printPreorder(){

std::cout << "[";

printPreorder(root);

std::cout << "]" << std::endl;

}

// driver function to call the private preorder traversal

void printInorder(){

std::cout << "[";

printInorder(root);

std::cout << "]" << std::endl;

}

// driver function to call the private preorder traversal

void printPostorder(){

std::cout << "[";

printPostorder(root);

std::cout << "]" << std::endl;

}

// should print the tree in a level-order traversal (NOT driver function)

void printLevelOrder(){

// CODE HERE

}

// mutators -----------------------------------------------------

// call private balance(1) on tree

void balance(){

balance(root);

}

// calls private remove function to remove starting at root

void remove(T& value){

remove(value, root);

}

void remove(T&& value){

T temp = T{value};

remove(temp);

}

// driver function for emptying the tree, since there is no public access

// to root of tree (as many other functions do in this file)

void empty(){

// CODE HERE

}

// calls private insert function to insert starting at root

void insert(T& value){

insert(value, root);

}

void insert(T&& value){

T temp = T{value};

insert(temp);

}

};

#endif

---------------------------------------------------------------------------

Data.h

#ifndef DATA_H #define DATA_H

#include

class DoubleData { private: double* data;

public: DoubleData(); DoubleData(double a); ~DoubleData() = default;

// accessors ------------------------------- double getData() const ; double compare(DoubleData& other) const; friend std::ostream& operator<<(std::ostream& os, const DoubleData& dd);

// mutators -------------------------------- void setData(double _data); };

#endif

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Databases questions

Question

What is Aufbau's rule explain with example?

Answered: 1 week ago

Question

Write Hund's rule?

Answered: 1 week ago