Question
#include #include #include #include #include #include #include #define MATRIX_DIM 3 #define THRESHOLD 0.1 void LoadImage(const char *filename, float **data, int *height, int *width); int SaveImage(const
#include
#include
#include
#include
#include
#include
#include
#define MATRIX_DIM 3
#define THRESHOLD 0.1
void LoadImage(const char *filename, float **data, int *height, int *width);
int SaveImage(const char *filename, float *image, int height, int width);
__host__ __device__
float GetValidPixelValue(float *image, int height, int width, int r, int c) {
// Prevent trying to read pixel locations outside the image
if (r < 0 || r >= height || c < 0 || c >= width)
return 0;
else
return image[r * width + c];
}
void SobelCPU(float *image, int height, int width, float *x_matrix,
float *y_matrix, float *output) {
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
float x_grad = 0;
x_grad += x_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
x_grad += x_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
x_grad += x_matrix[1 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i, j - 1);
x_grad += x_matrix[1 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i, j + 1);
x_grad += x_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
x_grad += x_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
float y_grad = 0;
y_grad += y_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
y_grad += y_matrix[0 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i - 1, j);
y_grad += y_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
y_grad += y_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
y_grad += y_matrix[2 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i + 1, j);
y_grad += y_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
float magnitude =
sqrt(x_grad / 8 * x_grad / 8 +
y_grad / 8 * y_grad / 8); // normalize gradients by dividing by 8
if (magnitude > 1) { // clamp to 1
output[i * width + j] = 1;
} else if (magnitude > THRESHOLD) {
output[i * width + j] = magnitude;
} else {
output[i * width + j] = 0;
}
}
}
}
__global__
void SobelGPUShared(float *image, int height, int width, float *x_matrix,
float *y_matrix, float *output) {
extern __shared__ float arr[];
int i = blockIdx.x*blockDim.x+threadIdx.x;
int j = blockIdx.y*blockDim.y+threadIdx.y;
//arr[i*j] = image[i*j];
if(i < height && j < width)
{
float x_grad=0;
x_grad += x_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
x_grad += x_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
x_grad += x_matrix[1 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i, j - 1);
x_grad += x_matrix[1 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i, j + 1);
x_grad += x_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
x_grad += x_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
__syncthreads();
float y_grad = 0;
y_grad += y_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
y_grad += y_matrix[0 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i - 1, j);
y_grad += y_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
y_grad += y_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
y_grad += y_matrix[2 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i + 1, j);
y_grad += y_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
__syncthreads();
float magnitude =
sqrt(x_grad / 8 * x_grad / 8 +
y_grad / 8 * y_grad / 8); // normalize gradients by dividing by 8
if (magnitude > 1) { // clamp to 1
output[i * width + j] = 1;
} else if (magnitude > THRESHOLD) {
output[i * width + j] = magnitude;
} else {
output[i * width + j] = 0;
}
// Implement this function, define a GPU kernel above it
}
}
__global__
void SobelGPU(float *image, int height, int width, float *x_matrix,
float *y_matrix, float *output) {
int i = blockIdx.x*blockDim.x+threadIdx.x;
int j = blockIdx.y*blockDim.y+threadIdx.y;
if(i < height && j < width)
{
float x_grad=0;
x_grad += x_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
x_grad += x_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
x_grad += x_matrix[1 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i, j - 1);
x_grad += x_matrix[1 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i, j + 1);
x_grad += x_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
x_grad += x_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
float y_grad = 0;
y_grad += y_matrix[0 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i - 1, j - 1);
y_grad += y_matrix[0 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i - 1, j);
y_grad += y_matrix[0 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i - 1, j + 1);
y_grad += y_matrix[2 * MATRIX_DIM + 0] *
GetValidPixelValue(image, height, width, i + 1, j - 1);
y_grad += y_matrix[2 * MATRIX_DIM + 1] *
GetValidPixelValue(image, height, width, i + 1, j);
y_grad += y_matrix[2 * MATRIX_DIM + 2] *
GetValidPixelValue(image, height, width, i + 1, j + 1);
float magnitude =
sqrt(x_grad / 8 * x_grad / 8 +
y_grad / 8 * y_grad / 8); // normalize gradients by dividing by 8
if (magnitude > 1) { // clamp to 1
output[i * width + j] = 1;
} else if (magnitude > THRESHOLD) {
output[i * width + j] = magnitude;
} else {
output[i * width + j] = 0;
}
// Implement this function, define a GPU kernel above it
}
}
double WallTime() { // returns time in MS as a double
struct timeval tv;
gettimeofday(&tv, 0);
return tv.tv_sec * 1000.0 + tv.tv_usec / 1000.0;
}
void CheckResults(int height, int width, float *gpu_result, float *cpu_result){
for (int i = 0; i < height * width; i++) {
if (fabs(gpu_result[i] - cpu_result[i]) > 0.01) {
printf(" Mismatch at index %d: GPU: %f CPU %f ", i, gpu_result[i], cpu_result[i]);
return;
}
}
printf(" Ok!!! ");
}
int main(int argc, char *argv[]) {
float *data;
double start, end;
int height, width;
LoadImage("input.bmp", &data, &height, &width);
// CPU/GPU Data
float *x_matrix;
float *y_matrix;
float *image;
float *cpu_result;
float *gpu_result;
cudaMallocManaged(&image, sizeof(float) * height * width);
cudaMallocManaged(&x_matrix, sizeof(float) * MATRIX_DIM * MATRIX_DIM);
cudaMallocManaged(&y_matrix, sizeof(float) * MATRIX_DIM * MATRIX_DIM);
cudaMallocManaged(&cpu_result, sizeof(float) * height * width);
cudaMallocManaged(&gpu_result, sizeof(float) * height * width);
memcpy(image, data, sizeof(float) * height * width);
// Sobel x kernel matrix (already flipped)
x_matrix[0] = -1;
x_matrix[1] = 0;
x_matrix[2] = 1;
x_matrix[3] = -2;
x_matrix[4] = 0;
x_matrix[5] = 2;
x_matrix[6] = -1;
x_matrix[7] = 0;
x_matrix[7] = 1;
// Sobel y kernel matrix (already flipped)
y_matrix[0] = -1;
y_matrix[1] = -2;
y_matrix[2] = -1;
y_matrix[3] = 0;
y_matrix[4] = 0;
y_matrix[5] = 0;
y_matrix[6] = 1;
y_matrix[7] = 2;
y_matrix[8] = 1;
start = WallTime();
SobelCPU(image, height, width, x_matrix, y_matrix, cpu_result);
end = WallTime();
printf("CPU Runtime = %f msecs ", end - start);
dim3 threadsPerBlock(16,16);
dim3 numBlocks(height/threadsPerBlock.x, width/threadsPerBlock.y);
cudaMemcpy(image, data, sizeof(float)*height*width,cudaMemcpyHostToDevice);
SobelGPUShared<<
cudaMemcpy(gpu_result,gpu_result, sizeof(float)*height*width,cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
CheckResults(height, width, gpu_result, cpu_result);
SaveImage("cpu_result.bmp", cpu_result, height, width);
SaveImage("gpu_result.bmp", gpu_result, height, width);
free(data);
cudaFree(image);
cudaFree(cpu_result);
cudaFree(gpu_result);
cudaFree(x_matrix);
cudaFree(y_matrix);
return 0;
}
Given this piece of Cuda code, how would you fix the shared memory sobel filter function SobelGPUShared so that the image is divided up into tiles that fit into shared memory?
Step by Step Solution
There are 3 Steps involved in it
Step: 1
The code provided implements a CUDAbased Sobel filter for edge detection in images using both CPU and GPU approaches However in the SobelGPUShared function there appears to be an incomplete implementa...Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started