Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Isto create forecasting models for the sales data of a company's different product families and regions. The company operates primarily in the United States but

Is to create forecasting models for the sales data of a company's different product families and regions. The company operates primarily in the United States but also has sales in Europe, South America, and the Pacific Rim, including China. The sales data is presented in two tables, one for the Industry Mower product family and one for the Industry Tractor product family. The data includes monthly sales figures for each region from January 2017 to December 2022

Guideline - Use best forecasting model that is: - For TREND - BASED models, the last 18 months of data should be used as validation data. The models should be optimized by adjusting their parameters.
 

For SIMPLE EXPONENTIAL SMOOTHING, the smoothing constant should be set to 0.05, and the first month's actual sales data should be rounded to the nearest hundred to seed the forecast column.
 

For MOVING AVERAGE, it should use a three-month window. Seasonality indices are also provided to forecast demand by region. 

Finally, the question asks to use Microsoft Excel and Analytic Solver to develop the forecasting models, evaluate the models, and create final forecasts for 2022 for each product family and region.
 

Tutors Answers - step by step of the solutions, excel sheet and the graph.
 

QUESTION
 

He focus of sales is on the eastern seaboard, California, the Southeast, and the south-central states, which have the greatest concentration of customers. Outside the United States, sales include a European market, a growing South American market, and developing markets in the Pacific Rim and China. The market is cyclical, but the different products and regions balance some of this, with just less than 30% of total sales in the spring and summer (in the United States), about 25% in the fall, and about 20% in the winter. Annual sales are approximately $180 million.
 

Use the following guidelines when creating forecasts:

 • Evaluate potential methods that align with your data. 

• Use the last 18 months as validation data with trend-based models. 

• Optimize parameters in trend-based models. 

• When using simple exponential smoothing, set  = 0.05 and round the actual data for the first month to the nearest hundred to seed your forecast column.

• For moving averages, use 3 months

• Use the following table of yearly forecasted demand for seasonality indices

NORTH AMERICASOUTH AMERICAEUROPEPACIFIC 
MOWERS950004500110003700
INDUSTRY MOWERS87000900025500025000
INDUSTRY TRACTORS156000430008100016000
     

DATA - MOWER UNIT SALES  

MonthNASAEuropePacificWorld
Jan-1760002007201007020
Feb-1779502209901209280
Mar-17810025013201109780
Apr-179050280165012011100
May-179900310159013011930
Jun-1710200300162012012240
Jul-178730280159014010740
Aug-178140250156013010080
Sep-17648023015901308430
Oct-17599022013201207650
Nov-1753202109901306650
Dec-1746401806601405620
Jan-1859802106901407020
Feb-18762024010201509030
Mar-188370250129014010050
Apr-188830290162015010890
May-189310330165013011420
Jun-1810230310159014012270
Jul-188720290156015010720
Aug-18771027015301409650
Sep-18632025015901508310
Oct-18584025012601607510
Nov-1849602409001506250
Dec-1843502106601505370
Jan-1960202205701606970
Feb-1979202508401509160
Mar-19843027011101609970

DATA-   INDUSTRY MOWER TOTAL SALES

MonthNASAEurPacWorld
Jan-176000057113091104574662
Feb-177718461117679111196585
Mar-1777885658227591068102369
Apr-1786190778279661237116171
May-1796117886278951313126210
Jun-1797143882305661176129768
Jul-1784757848294441359116409
Aug-1779804735283641238110141
Sep-176480065728393121595065
Oct-175930759524444115485500
Nov-175215755318000126271972
Dec-174504946212453138659349
Jan-185862755312778144373401
Feb-187620061518214151596545
Mar-1882871658238891373108791
Apr-1884904784294551442116584
May-1893100846294641215124625
Jun-1893000838274141333122585
Jul-1883048763273681415112594
Aug-1874854694273211296104164
Sep-186076962529444140292241
Oct-185561961023774146881470
Nov-184815557117308135167386
Dec-184264751212941138957489
Jan-195788553710962150970892
Feb-197764759515273140294917
Mar-1981845659205561524104583
Apr-1986095756267861574115211
May-1991776878248281468118949
Jun-19100680825247371560127801
Jul-1986190756248281441113216
Aug-197188771425179154599325
Sep-196000065124545166786863
Oct-195556664319286169877193
Nov-195085761915273181068558
Dec-19425965489107173153982
Jan-20580955818571188769135
Feb-207556661413158184591182
Mar-2080286622196551923102486
Apr-2085140727251791981113027
May-2090093826231031810115832
Jun-2095472783242861942122482
Jul-2087308681247371961114686
Aug-2074476646266072000103729
Sep-206169862522982207587381
Oct-205723861716897201976771
Nov-205067358713750209567105
Dec-20512385917818215061797
Jan-21597125637547185269673
Feb-217796157113889174394165
Mar-2183725625183021892104544
Apr-2190297723251922037118250
May-2191143848247061887118583
Jun-2199320792253061944127363
Jul-2193922745270832170123919
Aug-2173143739260422037101961
Sep-216669966726304201895688
Oct-215647666022558207281766
Nov-215106862514773218268648
Dec-21468936086977203556510

DATA - INDUSTRY TRACTOR TOTAL SALES

MonthNASAEurPacWorld
Jan-178143984509198715205
Feb-17859210515310109016042
Mar-17863010166071112716844
Apr-17894710275856120917039
May-17844210575273122115992
Jun-17750010195315132715161
Jul-1761459777170132415616
Aug-17588210575926126814132
Sep-17559510866075120913965
Oct-17523310456321116813766
Nov-17449410788381112715080
Dec-17391310297944108513971
Jan-18593811725688118513983
Feb-18663312737037128616228
Mar-18732714236981128617017
Apr-18807716127500134618535
May-18783017286571138817517
Jun-18710318156990144917357
Jul-18623917766667149016172
Aug-18603616856762144915932
Sep-18566416796635139415371
Oct-18534516186311125614529
Nov-18483115646476121414084
Dec-18445415226250117113396
Jan-19529918355922120814264
Feb-19652921156667121416524
Mar-19712022027228125617806
Apr-19761921518200131119280
May-19838722147941141519957
Jun-19811022787921152019828
Jul-19775221007677167519203
Aug-19689421287200158417806
Sep-19601523676735152716644
Oct-19536822116495142215495
Nov-19496424836061136614873
Dec-19444419865816126213509
Jan-20500022575051137313680
Feb-20628423536082143616155
Mar-20778524576327147818046
Apr-20993425177604151221568
May-201064526127789164222688
Jun-20949127497347166721254
Jul-20918228876979173320781
Aug-20852828336489170019550
Sep-20829327896316164219039
Oct-20822127655833157618395
Nov-20747027465789149317498
Dec-20650925345591145016084
Jan-21726726355106101016019
Feb-21880727035474104518028
Mar-211016827956022110620089
Apr-211104429976064115021254
May-211212031316344124422839
Jun-211345933116593135724720
Jul-211304833906304142124164
Aug-211227532776064126322879
Sep-211134732325789117321542
Oct-211066731315699112820625
Nov-21104593087560497420125
Dec-21100823030544497919536

Step by Step Solution

3.47 Rating (154 Votes )

There are 3 Steps involved in it

Step: 1

To create forecasting models in Excel using Analytic Solver follow these steps 1 Open Excel Open Microsoft Excel and ensure that Analytic Solver is in... blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Business Analytics Methods Models And Decisions

Authors: James R. Evans

2nd Edition

321997824, 978-1119298588, 978-0321997821

More Books

Students also viewed these General Management questions