Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Let R be the relation defined on a set of natural numbers N as follows: x R y g c d ( x + 1

Let R be the relation defined on a set of natural numbers N as follows:

xRygcd(x+1,y+1)2.

Is R reflexive ?

Is R symmetric ?

Is R transitive ?

I am able to answer reflexivity and symmetry, but require assistance with transitivity.

For reflexivity, since xN,x+11,xRx(x+1,x+1)2, hence R is reflexive.

For symmetry, since gcd(x+1,y+1)=gcd(y+1,x+1)2 for some x,yN yRxgcd(y+1,x+1)2

For transitivity, let x,y,zNs.t.xRygcd(x+1,y+1)2andyRzgcd(y+1,z+1)2

How to proceed from this point onward ?

Please use latex, as images are difficult to interpret!

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

New Trends In Algebraic Geometry

Authors: K Hulek ,M Reid ,C Peters ,F Catanese

1st Edition

0521646596, 978-0521646598

More Books

Students also viewed these Mathematics questions