Question
Linked List Operations LinkedListType, unorderedLinkedList, and orderedLinkedList are given to you in Chapter 17. linkedListIterator is given to you as well. The files are supplied
Linked List Operations
LinkedListType, unorderedLinkedList, and orderedLinkedList are given to you in Chapter 17. linkedListIterator is given to you as well. The files are supplied here.
Overload the insertFirst and insertLast pure virtual functions such that they accept a vector of possible values as parameters. All values in the vector are to be inserted.
Overload the deleteNode pure virtual function such that it accepts a vector of possible values. All values in the vector should be deleted.
Modify deleteNode such that an exception is thrown when called on an empty list and when the item to delete is not in the list.
Finally create a 2 lists using the STL list container. Add some values to them and sort them. Merge the two lists together into one list. Print the list using the screen iterator example from Appendix H.
Useful notes:
Leverage the functions which are already given to you.
Submission requirements:
Submit all files required to make this program run as required. Your solution can be a single file.
Submit source code, a screenshot with a time stamp of code execution, and a text file of the code. All code should include comments.
Grading Criteria Assignments | Maximum Points |
Program accomplishes requested operations per instructions | 40 |
The code works and meets all assignment specifications | 30 |
The code is organized and easy to follow and output is clear and clean | 20 |
Uses software tools correctly and efficiently | 10 |
Total | 100 |
::::::FILES:::::::
^^^^^^^^^^^^^^LinkedListType^^^^^^^^^^^^^^^
^linkedList.h
#ifndef H_LinkedListType #define H_LinkedListType #include #include using namespace std; //Definition of the node template struct nodeType { Type info; nodeType *link; }; template class linkedListIterator { public: linkedListIterator(); //Default constructor //Postcondition: current = nullptr; linkedListIterator(nodeType *ptr); //Constructor with a parameter. //Postcondition: current = ptr; Type operator*(); //Function to overload the dereferencing operator *. //Postcondition: Returns the info contained in the node. linkedListIterator operator++(); //Overload the pre-increment operator. //Postcondition: The iterator is advanced to the next // node. bool operator==(const linkedListIterator& right) const; //Overload the equality operator. //Postcondition: Returns true if this iterator is equal to // the iterator specified by right, // otherwise it returns the value false. bool operator!=(const linkedListIterator& right) const; //Overload the not equal to operator. //Postcondition: Returns true if this iterator is not // equal to the iterator specified by // right; otherwise it returns the value // false. private: nodeType *current; //pointer to point to the current //node in the linked list }; template linkedListIterator::linkedListIterator() { current = nullptr; } template linkedListIterator:: linkedListIterator(nodeType *ptr) { current = ptr; } template Type linkedListIterator::operator*() { return current->info; } template linkedListIterator linkedListIterator:: operator++() { current = current->link; return *this; } template bool linkedListIterator::operator== (const linkedListIterator& right) const { return (current == right.current); } template bool linkedListIterator::operator!= (const linkedListIterator& right) const { return (current != right.current); } //***************** class linkedListType **************** template class linkedListType { public: const linkedListType& operator= (const linkedListType&); //Overload the assignment operator. void initializeList(); //Initialize the list to an empty state. //Postcondition: first = nullptr, last = nullptr, // count = 0; bool isEmptyList() const; //Function to determine whether the list is empty. //Postcondition: Returns true if the list is empty, // otherwise it returns false. void print() const; //Function to output the data contained in each node. //Postcondition: none int length() const; //Function to return the number of nodes in the list. //Postcondition: The value of count is returned. void destroyList(); //Function to delete all the nodes from the list. //Postcondition: first = nullptr, last = nullptr, // count = 0; Type front() const; //Function to return the first element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the first // element of the list is returned. Type back() const; //Function to return the last element of the list. //Precondition: The list must exist and must not be // empty. //Postcondition: If the list is empty, the program // terminates; otherwise, the last // element of the list is returned. virtual bool search(const Type& searchItem) const = 0; //Function to determine whether searchItem is in the list. //Postcondition: Returns true if searchItem is in the // list, otherwise the value false is // returned. virtual void insertFirst(const Type& newItem) = 0; //Function to insert newItem at the beginning of the list. //Postcondition: first points to the new list, newItem is // inserted at the beginning of the list, // last points to the last node in the list, // and count is incremented by 1. virtual void insertLast(const Type& newItem) = 0; //Function to insert newItem at the end of the list. //Postcondition: first points to the new list, newItem // is inserted at the end of the list, // last points to the last node in the // list, and count is incremented by 1. virtual void deleteNode(const Type& deleteItem) = 0; //Function to delete deleteItem from the list. //Postcondition: If found, the node containing // deleteItem is deleted from the list. // first points to the first node, last // points to the last node of the updated // list, and count is decremented by 1. linkedListIterator begin(); //Function to return an iterator at the begining of //the linked list. //Postcondition: Returns an iterator such that current // is set to first. linkedListIterator end(); //Function to return an iterator one element past the //last element of the linked list. //Postcondition: Returns an iterator such that current // is set to nullptr. linkedListType(); //Default constructor //Initializes the list to an empty state. //Postcondition: first = nullptr, last = nullptr, // count = 0; linkedListType(const linkedListType& otherList); //copy constructor ~linkedListType(); //Destructor //Deletes all the nodes from the list. //Postcondition: The list object is destroyed. protected: int count; //variable to store the number of //elements in the list nodeType *first; //pointer to the first node of the list nodeType *last; //pointer to the last node of the list private: void copyList(const linkedListType& otherList); //Function to make a copy of otherList. //Postcondition: A copy of otherList is created and // assigned to this list. }; template bool linkedListType::isEmptyList() const { return (first == nullptr); } template linkedListType::linkedListType() //default constructor { first = nullptr; last = nullptr; count = 0; } template void linkedListType::destroyList() { nodeType *temp; //pointer to deallocate the memory //occupied by the node while (first != nullptr) //while there are nodes in { //the list temp = first; //set temp to the current node first = first->link; //advance first to the next node delete temp; //deallocate the memory occupied by temp } last = nullptr; //initialize last to nullptr; first has //already been set to nullptr by the while loop count = 0; } template void linkedListType::initializeList() { destroyList(); //if the list has any nodes, delete them } template void linkedListType::print() const { nodeType *current; //pointer to traverse the list current = first; //set current so that it points to //the first node while (current != nullptr) //while more data to print { cout << current->info << " "; current = current->link; } }//end print template int linkedListType::length() const { return count; } //end length template Type linkedListType::front() const { assert(first != nullptr); return first->info; //return the info of the first node }//end front template Type linkedListType::back() const { assert(last != nullptr); return last->info; //return the info of the last node }//end back template linkedListIterator linkedListType::begin() { linkedListIterator temp(first); return temp; } template linkedListIterator linkedListType::end() { linkedListIterator temp(nullptr); return temp; } template void linkedListType::copyList (const linkedListType& otherList) { nodeType *newNode; //pointer to create a node nodeType *current; //pointer to traverse the list if (first != nullptr) //if the list is nonempty, make it empty destroyList(); if (otherList.first == nullptr) //otherList is empty { first = nullptr; last = nullptr; count = 0; } else { current = otherList.first; //current points to the //list to be copied count = otherList.count; //copy the first node first = new nodeType; //create the node first->info = current->info; //copy the info first->link = nullptr; //set the link field of //the node to nullptr last = first; //make last point to the //first node current = current->link; //make current point to //the next node //copy the remaining list while (current != nullptr) { newNode = new nodeType; //create a node newNode->info = current->info; //copy the info newNode->link = nullptr; //set the link of //newNode to nullptr last->link = newNode; //attach newNode after last last = newNode; //make last point to //the actual last node current = current->link; //make current point //to the next node }//end while }//end else }//end copyList template linkedListType::~linkedListType() //destructor { destroyList(); }//end destructor template linkedListType::linkedListType (const linkedListType& otherList) { first = nullptr; copyList(otherList); }//end copy constructor //overload the assignment operator template const linkedListType& linkedListType::operator= (const linkedListType& otherList) { if (this != &otherList) //avoid self-copy { copyList(otherList); }//end else return *this; } #endif
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started