Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Mark Welsch deposits $7,800 in an account that earns interest at an annual rate of 8%, compounded quarterly. The $7,800 plus earned interest must remain
Mark Welsch deposits $7,800 in an account that earns interest at an annual rate of 8%, compounded quarterly. The $7,800 plus earned interest must remain in the account 2 years before it can be withdrawn. How much money will be in the account at the end of 2 years? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided. Round "Table Factor" to 4 decimal places.) Present Value Answer is complete but not entirely correct. Table Factor 7,800 ( 1.0829 Total Accumulation 8,446.62 Table B.1 Present Value of 1 p=1/(1+0 Rate Periods 19 2% 39 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434 0.9346 0.9259 0.9174 2 0.9803 0.9612 0.9426 0.9246 0.9070 0.8900 3 0.9706 0.9423 0.9151 0.8890 0.8638 0.8396 0.8163 0.8734 0.8573 0.7938 0.8417 0.8264 0.7722 0.7513 0.9091 0.8929 0.8696 0.7561 0.7972 0.6575 0.7118 1 2 3 4 0.9610 09238 0.8885 0.8548 0.8227 0.7921 0.7629 0.7350 0.6830 0.7084 0.6355 0.5718 4 5 0.9515 0.9057 0.8626 0.8219 0.7835 0.7473 0.7130 0.6806 6 0.9420 0.8880 0.8375 0.7903 0.7462 0.7050 0.6663 0.6302 7 0.9327 0.8706 0.8131 0.7599 0.7107 0.6651 0.6227 8 0.9235 0.8535 0.7894 0.7307 0.6768 0.6274 0.5820 9 09143 0.8368 0.7664 0.7026 0.6446 0.5919 0.5439 10 0.9053 0.8203 0.7441 0.6756 0.6139 0.5584 0.5083 0.4632 0.5674 0.6209 0.6499 0.5645 0.5963 0.5066 0.4523 0.3759 0.5132 0.5470 0.5835 0.3269 0.4039 0.4665 0.5403 0.5019 0.3606 0.5002 0.4604 0.4241 03220 0.2472 0.3855 0.4224 0.4972 5 0.4323 6 7 8 0.2843 9 10 11 0.8963 0.8043 0.7224 0.6496 0.5847 0.5268 0.4751 0.4289 0.3875 0.3505 0.2875 0.2149 11 12 0.8874 0.7885 0.7014 0.6246 0.5568 0.4970 0.4440 0.3971 0.3555 0.3186 0.2567 0.1869 12 13 0.8787 0.7730 0.6810 0.6006 0.5303 0.4688 0.4150 0.3677 0.3262 0.2897 0.2292 0.1625 13 14 0.8700 0.7579 0.6611 0.5775 0.5051 0.4423 0.3878 0.3405 0.2992 0.2633 0.2046 0.1413 14 15 0.8613 0.7430 0.6419 0.5553 0.4810 0.4173 0.3624 03152 0.2745 0.2394 0.1827 0.1229 15 16 20 123287829 0.8528 0.7284 0.6232 05339 0.4581 03936 0.3387 0.2919 0.2519 0.2176 0.1631 0.1069 16 0.8444 0.7142 0.6050 0.5134 0.4363 03714 03166 0.2703 0.2311 0.1978 0.1456 0.0929 17 0.8360 0.7002 0.5874 0.4936 0.4155 03503 0.2959 0.2502 0.2120 0.1799 0.1300 0.0808 18 0.8277 0.5864 0.5703 0.4746 0.3957 0.3305 0.8195 0.6730 0.5537 04564 03769 25 0.7798 30 07419 0.3521 0.6095 0.4776 0.4120 35 0.7059 0.5000 0.3554 40 0.6717 0.4529 03066 0.2317 0.2765 0.3118 0.2584 0.2145 0.1160 0.1842 0.1460 0.2330 0.2953 0.3751 0.0994 0.0754 0.0573 0.1314 0.2314 0.1741 03083 0.0676 0.0356 0.0937 0.1301 0.0490 0.2534 0.1813 0.0460 0.0318 0.0668 0.1420 0.0972 0.2083 0.1945 0.1635 0.1161 0.0703 19 0.1784 0.1486 0.1037 0.0611 20 0.0923 0.0588 0.0304 25 0.0334 0.0151 30 0.0189 0.0075 35 0.0221 0.0107 0.0037 40 end to compute the present value of a known future amount. For example: How much would you need to invest today at 10% compounded semiannually to accumulate $5,000 in 6 yea 1555 wald end is $2.754 and 55.000 x 0.5568) Table B.2 Future Value of 1 f=(1+i)" Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 1 1.0100 1.0200 1.0300 1.0400 1.0500 1.0600 1.0700 1.0800 1.0900 1.1000 1.1200 1.1500 I 2 10201 10454 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 13225 2 3 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.3310 4 1.0406 1.0824 1.1255 1.1699 1.2155 1.2625 1.3108 13605 14116 1.4641 1.4049. 1.5735 1.7490 15209 3 4 5 1.0510 1.10411 1.1593 1.2167 1.2763 1.3382 1.4026 1.4693 1.5386 1.6105 1.7623 2.0114 5 6 1.0615 1.1262 1.1941 1.2653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.9738 2.3131 6 7 1.0721 1.1487 1.2299 1.3159 1.4071 1.5036 1.6058 1.7138 1.8280 1.9487 2.2107 2.6600 7 8 1.08291 1.1717 1.2668 1.3686 14775 1.5938 1.7182 1.8509 1.9926 9 1.0937 1.1951 1.3048 14233 1.5513 1.6895 1.8385 1.9990 2.1719 2.1436 2.3579 2.7731 24760 3.0590 8 3.5179 9 10 1.1046 1.2190 1.3439 1.4802 1.7908 1.6289 1.9672 2.1589 2.3674 2.5937 3.1058 4.0456 10 11 1.1157 1.2434 13842 1.5395 1.7103 1.8983 2.1049 2.3316 2.8531 2.5804 3.4785 4.6524 11 12 1.1268 1.2682 1.4258 1.6010 1.7959 20122 2.2522 2.5182 2.8127 3.1384 3.8960 5.3503 12 13 1.1381 1.2936 1.4685 1.6651 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 13 14 1.1495 1.3195 1.5126 1.7317 1.9799 2.2609 2.5785 2.9372 3.3417 3.7975 4.8871 7.0757 14 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.1722 3.6425 4.1772 5.4736 8.1371 15 16 1.1726 13728 1.6047 1.8730 2.1829 2.5404 2.9522 3.4259 3.9703 4.5950 6.1304 9.3576 16 17 1.1843 14002 1.6528 1.9479 2.2920 2.6928 3.1588 3.7000 4.3276 5.0545 6.8660 10.7613 17 18 1.1961 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 18 19 1.2081 1.4568 1.7535 2.1068 2.5270 3.0256 20 1.2202 1.4859 1.8061 2.1911 2.6533 3.2071 25 1.2824 1.6406 2.0938 2.6658 3.38641 30 1.3478 1.81141 2.4273 3.2434 4.3219 35 14166 1.9999 2.8139 3.9461 5.5160 40 14889 2.2080 3.2620 4.8010 7.0400 10.2857 3.6165 4.3157 4.6610 3.8697 54274 6.8485 4.2919 10.0627 7.6123 5.7435 10.6766 14.7853 7.6861 14.9745 21.7245 6.1159 5.1417 6.7275 5.6044 8.6231 10.8347 13.2677 17.4494 20.4140 28.1024 45.2593 93.0510 267.8635 31.4094 8.6128 14.2318 9.6463 16.3665 32.9190 17.0001 66.2118 29.9599 133.1755 52.7996 19 20 25 30 35 40 Table B.3 Present Value of an Annuity of 1 p=[1-1/(1+iVi Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 0.9901 0.9804 0.9709 0.9524 0.9615 0.9434 0.9346 2 1.9704 1.9416 1.9135 1.8861 1.8594 1.8334 3 2.9410 2.8839 2.8286 2.7751 2.7232 4 3.9020 3.8077 3.7171 3.6299 5 4.8534 4.7135 4.5797 4.4518 2.6730 3.4651 3.5460 4.2124 4.3295 0.9259 1.7591 1.7833 1.8080 2.5313 2.5771 2.6243 3.3121 3.2397 3.1699 3.3872 3.8897 3.9927 4.1002 0.9174 0.8929 0.9091 0.8696 1 1.7355 1.6901 1.6257 2 2.4869 2.4018 2.2832 3 3.0373 2.8550 4 3,7908 3.6048 3.3522 5 6 5.7955 5.6014 5.4172 5.2421 5.0757 4.9173 4.7665 4.6229 4.4859 4.3553 4.1114 3.7845 6 7 6.7282 6.4720 6.2303 6.0021 5.7864 5.5824 5.3893 5.2064 4.8684 5.0330 4.56381 4.1604 7 8 7.6517 7.3255 7.0197 6.7327 6.4632 6.2098 5.9713 5.7466 5.5348 5.3349 4.9676 4.4873 8 9 8.5660 8.1622 7.7861 10 9.4713 8.9826 8.5302 11 10.3676 9.7868 9.2526 8.7605 12 11.2551 10.5753 9.9540 9.3851 7.1078 7.4353 7.7217 8.1109 8.3064 8.8633 6.8017 6.5152 6.2469 5.9952 5.7590 5.3282 4.7716 9 7.3601 7.4987 7.8869 7.9427 8.3838 7.0236 64177 6.7101 6.1446 5.6502 5.0188 10 5.9377 6.4951 6.8052 7.1390 5.2337 11 7.5361 7.1607 6.8137 6.1944 5.4206 12 13 12.1337 11.3484 10.6350 9.9856 9.3936 8.8527 8.3577 7.9038 7.4869 7.1034 6.4235 5.5831 13 14 13.0037 12.1062 11.2961 15 13.8651 12.8493 11.9379 16 14.7179 13.5777 17 15.5623 14.2919 13.1661 10.5631 9.8986 11.1184 12.5611 11.6523 12.1657 9.2950 8.7455 8.2442 7.7862 7.3667 6.6282 5.7245 14 18 16.3983 14.9920 13.7535 12.6593 19. 17.2260 15.6785 14.3238 13.1339 20 18.0456 16.3514 14.87751 13.5903 25 22.0232 19.5235 17.41311 30 25.8077 22.3965 35 29.40861 40 32.8347 9.7122 10.3797. 10.1059 94466 8.8514 10.8378 10.4773 11.2741 9.3719 10.0591 10.8276 11.6896 10.3356 11.15811 12.0853 9.8181 11.4699 10.5940 12.4622 9.8226 10.6748 11.6536 12.7834 14.0939 15.6221 11.2578 10.2737 12.4090 13.7648 15.3725 19.6004 17.2920 9.6442 10.5668 11.6546 12.9477 14.4982 16.3742 18.6646 21.4872 24.9986 9.7791 10.7574 11.9246 15.0463 19.7928 17.1591 27.3555 23.1148 9.1079 8.5595 8.0607 7.6061 6.8109 5.84741 15 8.3126 7.8237 6.9740. 5.9542 16 9.7632 9.1216 8.5436 8.0216 7.1196 6.0472 17 8.7556 8.2014 7.2497 6.1280 18 9.6036 8.9501 8.3649 7.3658 6.1982 19 9.1285 8.5136 7.4694 6.2593 20 9.0770 7.8431 6.4641 25 9.4269 8.0552 6.5660 30 8.1755 6.6166 35 13.3317 8.2438 6.6418 40 at the end of each period. For example: What is the present value of $2,000 per year for 10 years assum Table B.4 Future Value of an Annuity of 1 = [(1+i)-1/i Rate Periods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 12% 15% Periods 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 2 2.0100 2.0200 2.0300 2.0400 2.0500 2.0600 3 3.0301 3.0604 3.0909 3.1216 3.1525 3.1836 4 4.0604 4.1216 4.1836 4.2465 4.3101 4.3746 5 5.1010 5.2040 5.3091 5.4163 5.5256 5.6371 6 6.1520 6.3081 64684 6.6330 6.8019 6.9753 7 7.2135 74343 7.6625 7.8983 8.1420 8.3938 8 8.2857 8.58301 8.8923 9.2142 9 9.3685 9.7546 10 10.4622 10.9497 11 11.5668 12.1687 12 12.6825 13.4121 14.1920 13 13.8093 14.6803 15.6178 10.1591 10.5828 11.4639 12.0061 12.8078 13.4864 15.0258 16.6268 14 14.9474 159739 17.0863 15 16.0969 17.2934 18.5989 16 17 18.2919 20.0236 17.2579 18.6393 20.1569 21.8245 18.4304 20.0121 21.7616 23.6975 15.9171 17.7130 19.5986 18 19. 20 19.6147 214123 23.4144 25.6454 20.8109 22.8406 25.1169 27.6712 22.0190 24.2974 26.8704 29.7781 25 30 35 40 2.0900 2.1000 2.1200 3.2464 3.2781 3.3100 3.3744 4.4399 4.5061 4.5731 4.6410 4.7793 5.7507 5.66 5.9847 6.1051 6.3528 7.1533 7.3359 7.5233 7.7156 8.1152 8.6540 8.9228 9.2004 9.4872 10.0890 9.5491 9.8975 10.2598 10.6366 11.0285 11.4359 12.2997 11.0266 11.4913 11.9780 12.4876 13.0210 13.5795 14.7757 12.5779 13.1808 13.8164 14.4866 15.1929 15.9374 17.5487 14.2068 14.9716 15.7836 16.6455 17.5603 18.5312 20.6546 24.3493 16.8699 17.8885 18.9771 20.1407 21.3843 24.1331 29.0017 18.8821 20.1406 21.4953 22.9534 24.5227 28.0291 34.3519 21.0151 22.5505 24.2149 26.0192 27.9750 32.3926 40.5047 21.5786 23.2760 25.1290 27.1521 29.3609 31.7725 37.2797 47.5804 23.6575 25.6725 27.8881 30.3243 33.0034 35.9497 42.7533 55.7175 25.8404 28.2129 30.8402 33.7502 36.9737 40.5447 48.8837 65.0751 28.1324 30.9057 33.9990 374502 41.3013 45.5992 55.7497 75.8364 30.5390 33.7600 37.3790 41.4463 46.0185 51.1591 63.4397 88.21181 33.0660 36.7856 40.9955 45.7620 51.1601 57.2750 72.0524 102.4436 28.2432 32.0303 36.4593 41.6459 47.7271 54.8645 63.2490 73.1059 84.7009 98.3471 133.3339 212.7930 34.7849 40.5681 47.5754 56.0849 66.4388 79.0582 94.4608 113.2832 136.3075 164.4940 241.3327 434.7451 41.6603 49.9945 60.4621 73.6522 90.3203 11143481 138.2369 172.3168 215.7108 271.0244 431.6635 881.1702 48 8864 60.4020 75.4013 95.0255 120.7998 154.7620 199.6351 259.0565 337.8824 442.5926 767.0914 1,779 0903 2.0700 2.0800 2.1500 2 3.2149 3.4725 3 4.9934 4 6.7424 5 8.7537 6 11.0668 7 13.7268 8 16.7858 9 20.3037 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 Used to calculate the future value of a series of equal payments made at the end of each period. For example: What is the future value of $4,000 per year for 6 years assuming an annual interes
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started