Need answers with explanations
1. Oscar consumes two goods, wine and cheese. His weekly income is $500. a. Describe Oscar's budget constraints under the following conditions: Wine costs $10/bottle, cheese costs $5/ pound; Wine costs $10/bottle, cheese costs $10/ pound; Wine costs $20/bottle, cheese costs $10/ pound; Wine costs $20/bottle, cheese costs $10/ pound, but Oscar's income increases to $1,000/week. b. What can you conclude by comparing the first and the last of these budget constraints? 2. Suppose a person has $8.00 to spend only on apples and bananas. Apples cost $.40 each, and bananas cost $.10 each. a. If this person buys only apples, how many can be bought? b. If this person buys only bananas, how many can be bought? c. If the person were to buy 10 apples, how many bananas could be bought with the funds left over? d. If the person consumes one less apple (that is, nine), how many more bananas could be bought? Is this rate of trade-off the same no matter how many apples are relinquished? e. Write down the algebraic equation for this person's budget constraint, and graph it showing the points mentioned in parts a through d. 3. Julio receives utility from consuming food (F) and clothing (C) as given by the utility function U (F. C) = FC. In addition, the price of food is $2 per unit, the price of clothing is $10 per unit, and Julio's weekly income is $50. a. What is Julio's marginal rate of substitution of food for clothing when utility is maximized? Explain. b. Suppose instead that Julio is consuming a bundle with more food and less clothing than his utility maximizing bundle. Would his marginal rate of substitution of food for clothing be greater than or less than your answer in part a? Explain. 4. Janelle and Brian each plan to spend $20,000 on the styling and gas mileage features of a new car. They can each choose all styling, all gas mileage, or some combination of the two. Janelle does not care at all about styling and wants the best gas mileage possible. Brian likes both equally and wants to spend an equal amount on each. Using indifference curves and budget lines, illustrate the choice that each person will make