Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Need help with LaTex code. I am going to copy and paste it because it will not let me attach the tex so can someone

Need help with LaTex code. I am going to copy and paste it because it will not let me attach the tex so can someone help. Just recopy it without the errors as an answer or attack compilable copy! Thank you so much.

\documentclass[12pt]{article} \usepackage{amsmath, amssymb}

\begin{document}

\thispagestyle{empty}

{\bf \centerline{Writing Assignment 1}}

\vskip 0.5cm

{\bf 1.} For any set A, B, and C, prove that: \vskip 0.5cm

$(A\cap (B\cup C)=(A\cap B) \cup (A\cap C)$ \vskip 0.5cm

a) Prove: $(A\cap(B\cap C)\subset(A\cap B)\cup C)$

$(\forall x\in A\cap(B\cap C) so x\in A and x\in (B\cup C))$ \vskip 0.5cm

x is always belongs to set A and x is also a set to B or C. \vskip 0.5cm

$(x\in A and (x\in B)\bigvee (x\in C))$

Case 1: $(x\in B)$ \vskip 0.5cm

x is always belongs in A and in this case in B. So therefore, it is also in either A and B or the set is in C. Since x is in B in case one, it does not need to be in . \vskip 0.5cm

$(x\in(A\cap B)\cup C)$ \vskip 0.5cm

Case 2: $(x\in C)$ \vskip 0.5cm

$(x\in C)$ in case two, so the statement still holds true. \vskip 0.5cm

$(x\in(A\cap B)\cup C)$ \vskip 0.5cm

Therefore, $(A\cap(B\cup C)\subset (A\cap B)\cup C)$ \vskip 0.5cm

b) Prove: $((A\cap B)\cup(A\cap C)\subset A\cap (B\cup C))$ \vskip 0.5cm

$(\forall x\in(A\cap B)\cup(A\cap C) so x\in A and x\in (A\cap B)\bigvee(A\cap C))$ \vskip 0.5cm

case 1: $(x\in B)$ \vskip 0.5cm

since x always belongs to A, then $(A\cap(B\cup C))$ is true because it is in B and only needs to belong to B or C to be true. \vskip 0.5cm

$(x\in A\cap(B\cup C))$ \vskip 0.5cm

case 2: $(x\in C)$ \vskip 0.5cm

x always belongs to A so $(x\in A\cap(B\cupC))$ is true because x only needs to also belong in B and C and in case two, it belongs in C. \vskip 0.5cm

Therefore, $((A\cap B)\cup(A\cap C)\subset A\cap(B\cup C))$ and $(A\cap(B\cup C)\subset (A\cap B)\cup(A\cap C))$ so it follows $(A\cap(B\cup C)=(A\cap B)\cup(A\cap C))$ \vskip 0.5cm

{\bf 2.} using principle of mathematical induction, prove: $(1\cdot 1!+2\cdot 2!+3\cdot 3!+ \dots + n\cdot n!=(n+1)!-1$$ for all $n \in \mathbb{N})$ \vskip 0.5cm

a) base of induction: P(1)-T \vskip 0.5cm

Let $(n=1)$ $(1\cdot 1! = (1+1)!-1)$ $(1\cdot 1! = 1$ and $(1+1)!-1=1)$ $(1=1)$ so P(1) is True \vskip 0.5cm

b) Induction Step: $(P(n)\Longrightarrow P(n+1))$ \vskip 0.5cm

Assume: P(m) = $(1\cdot 1! + 2\cdot 2! + \dots + m\cdots m! = (m+1)!-1)$ \vskip 0.5cm

Want: $((m+1)!-1+(m+1)\cdot (m+1)!=(m+2)!-1)$ \vskip 0.5cm

$(1\cdot 1! + 2\cdot 2!+\dots+m\cdot m!+ (m+1)\cdot (m+1)! = (m+1)!-1+(m+1)\cdot (m+1)!)$ \vskip 0.5cm

$(=(m+1)!\cdot (1+m+1)-1)$ $(=(m+1)!\cdot (m+2)-1)$ $((m+2)!-1)$

\vskip 0.5cm

a) base of induction: P(1)-T \vskip 0.5cm

Let $(n=1)$ $(1\cdot 1! = (1+1)!-1)$ $(1\cdot 1! = 1$ and $(1+1)!-1=1)$ $(1=1)$ so P(1) is True \vskip 0.5cm

b) Induction Step: $(P(n)\Longrightarrow P(n+1))$ \vskip 0.5cm

Assume: P(m) = $(1\cdot 1! + 2\cdot 2! + \dots + m\cdots m! = (m+1)!-1)$ \vskip 0.5cm

Want: $((m+1)!-1+(m+1)\cdot (m+1)!=(m+2)!-1)$ \vskip 0.5cm

$(1\cdot 1! + 2\cdot 2!+\dots+m\cdot m!+ (m+1)\cdot (m+1)! = (m+1)!-1+(m+1)\cdot (m+1)!)$ \vskip 0.5cm

$(=(m+1)!\cdot (1+m+1)-1)$ $(=(m+1)!\cdot (m+2)-1)$ $((m+2)!-1)$

\end{document}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Databases Illuminated

Authors: Catherine Ricardo

2nd Edition

1449606008, 978-1449606008

More Books

Students also viewed these Databases questions