Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Need help with question 4d)See question 1e) for information needed to complete 4d), because it makes use of preference relation defined in 1e)Bear in mind

Need help with question 4d)See question 1e) for information needed to complete 4d), because it makes use of preference relation defined in 1e)Bear in mind Q4d has parts i and ii

image text in transcribed
1. Let X = Z+, the set of nonnegative integers. In each of the following parts, we will name a binary relation on X. For each one, tell me (i) whether or not it is complete, (ii) whether or not it is transitive, (iii) whether or not it is a preference relation, and if so, (iv) whether or not it admits a utility representation. Justify your answers. (a) The relation =. (b) The relation . (c) The relation YES where YESy for every a and y. (d) The relation NOPE where we don't have aNOPEy for any a and y. (e) The relation , where a ~ y if and only if either x = 0 or x 2 y > 1. 4. [In addition to giving you some practice thinking about utility representations, this question will give us a bit more intuition for the idea that utility is an "ordinal" concept. It will also show how some of our intuitions about utility might apply when X is finite but not when X is infinite.] Let X be a set, let _ be a preference relation on X, and let u be a utility representation for . (a) Suppose X is finite. Explain why some (large enough) number M > 0 exists such that -M J u(x) _ M for every r E X. That is, the utility is bounded. (b) Show that, even if X is infinite, some alternative utility representation u and some (large enough) number M > 0 exists such that -M S u(x) S M for every r E X. [Hint: The function 4 : R - R given by 4(t) = 1+14 is strictly increasing.] (c) Suppose X is finite. Show that some (small enough) number m > 0 exists such that u(x) - u(y) > m for any = > y. (d) Suppose X = Z+, and _ is the preference relation defined in question 1(e). i. Explain why any whole number k 2 3 has u(1) 1 y if I Z1 y but y X1 x; and we say a ~ y if z Z1 y and y X1 I 2 ii. Explain why no number m > 0 exists such that u(x) - u(y) > m for any x > y

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Rural Development And Urban-Bound Migration In Mexico

Authors: Arthur Silvers, Pierre Crosson

1st Edition

1317270681, 9781317270683

More Books

Students also viewed these Economics questions

Question

Discuss what happens when children develop two languages.

Answered: 1 week ago

Question

Relax your shoulders

Answered: 1 week ago

Question

Keep your head straight on your shoulders

Answered: 1 week ago

Question

Be straight in the back without blowing out the chest

Answered: 1 week ago