Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Old MathJax webview Old MathJax webview Please solve it complete within one hour i will upvote you this is given data use them 17. Pricing

Old MathJax webview

Old MathJax webview

image text in transcribed

image text in transcribed

image text in transcribed

Please solve it complete within one hour i will upvote you

image text in transcribed

this is given data use them

17. Pricing options on the S&P 500 Micro E-mini futures (54 points) Use a two-period binomial model to price March call options on the March S&P 500 futures. Suppose your research assistant already calculated all the main parameters for the binomial model. These parameters already account for the fact that the index pays a continuously compounded dividend yield Per-period risk-free rate=0.095% Per-period up parameter = 1.071 Per-period down parameter = 0.934 Risk-neutral probability of an up movement = 0.489 Proceed in several steps. a) (12 points) First, determine the S&P 500 index values in the two-period binomial model. Because the up and down parameters are adjusted for the dividend yield, no additional adjustment for dividends is required when constructing the binomial tree for the S&P 500 index. Suu = Su = S =4,687.94 Sud = Sa= Sad = t=1 t=2 t=0 b) (18 points) Next, find a European call option price on the S&P 500 index with a strike price of 4,685 Cuo Cu = Cud Ca= Cdd = t=0 t=1 t=2 c) (12 points) Then, calculate the theoretical S&P 500 futures prices in the two-period binomial model (Note: here, you need to account for the full cost-of-carry, including the dividends). fuu = fu = fo = fud = fo= fad = t=1 t=2 t=0 d) (12 points) Finally, find the price of an American call option on the S&P 500 futures with a strike price of 4,685. Cuu Cu = C= Cud = Ca= Cod = t=0 t=1 t=2 18, 2022 (in 99 days). Panel A: S&P 500 index: S&P 500 index 4,687.94 0.70% Level Risk-free rate (continuously compounded) Dividend yield (continuously compounded) 1.28% Panel B: European options on the S&P 500 index: Strike Price 4,685 March Call Midpoint Price Delta 166.90 0.510 March Put Midpoint Price 175 Delta -0.484 Each S&P 500 options contract is for 100 times the value of the S&P 500 index. Annualized volatility implied in March options is 18%. Panel C: S&P 500 Micro E-mini futures: March Micro E-mini futures 4,686.25 Price Each Micro E-mini futures contract is for 5 times the value of the S&P 500 index. Panel D: American options on the S&P 500 Micro E-mini futures: Strike Price 4,685 March Call Last price 180.00 March Put Last price 167.75 17. Pricing options on the S&P 500 Micro E-mini futures (54 points) Use a two-period binomial model to price March call options on the March S&P 500 futures. Suppose your research assistant already calculated all the main parameters for the binomial model. These parameters already account for the fact that the index pays a continuously compounded dividend yield Per-period risk-free rate=0.095% Per-period up parameter = 1.071 Per-period down parameter = 0.934 Risk-neutral probability of an up movement = 0.489 Proceed in several steps. a) (12 points) First, determine the S&P 500 index values in the two-period binomial model. Because the up and down parameters are adjusted for the dividend yield, no additional adjustment for dividends is required when constructing the binomial tree for the S&P 500 index. Suu = Su = S =4,687.94 Sud = Sa= Sad = t=1 t=2 t=0 b) (18 points) Next, find a European call option price on the S&P 500 index with a strike price of 4,685 Cuo Cu = Cud Ca= Cdd = t=0 t=1 t=2 c) (12 points) Then, calculate the theoretical S&P 500 futures prices in the two-period binomial model (Note: here, you need to account for the full cost-of-carry, including the dividends). fuu = fu = fo = fud = fo= fad = t=1 t=2 t=0 d) (12 points) Finally, find the price of an American call option on the S&P 500 futures with a strike price of 4,685. Cuu Cu = C= Cud = Ca= Cod = t=0 t=1 t=2 18, 2022 (in 99 days). Panel A: S&P 500 index: S&P 500 index 4,687.94 0.70% Level Risk-free rate (continuously compounded) Dividend yield (continuously compounded) 1.28% Panel B: European options on the S&P 500 index: Strike Price 4,685 March Call Midpoint Price Delta 166.90 0.510 March Put Midpoint Price 175 Delta -0.484 Each S&P 500 options contract is for 100 times the value of the S&P 500 index. Annualized volatility implied in March options is 18%. Panel C: S&P 500 Micro E-mini futures: March Micro E-mini futures 4,686.25 Price Each Micro E-mini futures contract is for 5 times the value of the S&P 500 index. Panel D: American options on the S&P 500 Micro E-mini futures: Strike Price 4,685 March Call Last price 180.00 March Put Last price 167.75

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Computational Finance And Its Applications

Authors: C. A. Brebbia, M. Costantino

1st Edition

1853127094, 978-1853127090

More Books

Students also viewed these Finance questions

Question

Who is present when I give in to my bad habit?

Answered: 1 week ago