On January 1, 2017, Eagle borrows $29,000 cash by signing a four-year, 5% installment note. The note requires four equal payments of $8,178, consisting of accrued interest and principal on December 31 of each year from 2017 through 2020. (Table B.1,Table B.2,Table B.3, andTable B.4)(Use appropriate factor(s) from the tables provided.)
On January 1, 2017, Eagle borrows $29,000 cash by signing a four-year, 5% installment note. The note requires four equal payments of $8,178, consisting of accrued interest and principal on December 31 of each year from 2017 through 2020. able 8.1, M, @ , and Table 8.4) (Use appropriate factor(s) from the tables provided.) Prepare an amortization table for this installment note. TABLE B . 1* Present Value Of 1 D = 1/ 1 1 + i'm` 0.9901 0. 98:04 0.9709 0.9515 0. 9524 0. 94.34 0.9346 0.9250 0. 9174 0.9091 0.8920 0. 8695 0.9803 0.9512 0.9245 0.9070 0.8900 0. 8734 0.8573 0. 8417 0. 8254 0. 7972 0. 7561 0.9705 0. 9423 0.9151 0.8.890 0.8638 0.8395 0. 8 163 0. 7938 0. 1722 0.75,13 0.TITE 0.6575 0.9510 0. 9238 0 . 8.8 85 0.8548 0.8227 0. 7921 0. 7629 0. 7350 0. 7084 0.68.30 0. 6355 0.5718 0.9515 0.9057 0. 8526 0. 8219 0. 7835 0. 7473 0. 71.30 0. 5805 0. 6499 0. 5674 0.9420 0. 8.8.80 0. 8375 0. 7903 0. 7452 0. 5653 0. 53.02 0.5953 0.56.45 0.5065 0. 4323 0.9327 0. 8705 0. 8131 0. 7595 0.7107 0. 65.51 0. 5227 0.5.8:35 0.5470 0. 51.32 0. 4523 0.9235 0. 85.35 0. 7894 0. 7307 Q. BTOB 0. 5274 0. 5820 0.5403 0. 5019 0. 4565 0. 40.39 0. 3259 0.9143 0. 8368 0. 7564 0.7026 0.6445 0.5919 0. 54.39 0.50.02 0. 4504 0. 4241 0. 3605 0. 28:43 0.9053 0. 8203 0.7441 0. 6756 0.6139 0.55.8:4 0.5083 0. 4532 0. 4224 0. 3.855 0. 3220 0.8953 0. 8043 0. 7224 0.6495 0.58:47 0.5268 0. 4751 0. 4289 0. 3875 0. 3505 0. 2875 0. 2149 0.8.874 0 . 78.85 0. 5245 0.5568 0.4970 0. 4440 0. 3971 0. 35.55 0.3186 0. 2567 0. 1859 0.8787 0. 7730 0.6810 0. 50.05 0.5303 0. 46.8 8 0. 4150 0. 3677 0. 3202 0. 2897 0. 2292 0. 1625 14 0. 8700 0.7579 0.651 1 0.5775 0.5051 0. 4 423 0. 3878 0. 3405 0. 2633 0. 2045 0. 1413 15 0. 8513 0. 7430 0.6419 0.5.553 0. 4810 0. 4173 0.3624 0. 3152 0. 2745 0. 2394 0 . 1827 0. 1229 0. 8528 0. 7284 0.53.39 0.4581 0. 3936 0. 3.38 7 0. 2919 0. 2519 0. 2176 0. 16.31 0. 1059 0. 8:444 0.7142 0.60.50 0.5134 0.4353 0.3714 0. 2703 0. 231 1 0. 1978 0. 1456 0.0929 18 0.8360 0. 70.02 0.5874 0. 4935 0. 415.5 0.3503 0. 2959 0. 2502 0. 2120 0. 1799 0 . 13:00 0. 0BUB 0.8277 0.6.864 0.5703 0. 4745 0.3957 0. 3.305 0. 2765 0. 2317 0. 1945 0. 15.35 0. 1 161 0.0703 20 0. 8 195 0. 6730 0.5.5.37 0. 456.4 0.3759 0. 31 18 0. 2584 0. 2145 0. 1486 0. 1037 0. 051 1 25 0. 7798 0.6095 0. 4776 0.3751 0. 295.3 0. 23:30 0. 1842 0. 1460 0. 1 160 0.0923 0. 05BE 0.0304 30 0 .7419 0. 5521 0. 4120 0 . 3083 0.2314 0. 1741 0. 1314 0.0994 0.0754 0.0573 0.03.34 0.0151 35 0. 7059 0.5000 0. 35.54 0. 2534 0. 1813 0. 1301 0.0937 0.0490 0.0356 0. 0189 0.0.075 40 0. 6717 0.4529 0.3056 0. 2083 0 . 1420 2.0972 0.0450 2.0318 0.0221 0. 0107 0.00.37 * Used to compute the present value of a known future amount For example : How much would you need to invest today at IN` compounded semiannually to accumulate $5. and in { years From today ?' L'sing the factors of 1 = 12 and i = 54 1 1 2 semiannual periods and a semiannual rate of 57 1, the factor is 1 5 5GB. You would need to invest $2. 784 today 1}}. an * O. STABY.`TABLE B.2 Future Value of 1 f= (1 +i)" Perlods 1% 2% 3% 4% 5% 6% 7% 8% 9% 12% 15% O 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0200 1.0300 1.0400 1.0600 1.0700 1.0800 1.0900 1.1000 1.1200 1.1500 1.0201 1.0404 1.0609 1.0816 1.1025 1.1236 1.1449 1.1664 1.1881 1.2100 1.2544 1.3225 m 1.0303 1.0612 1.0927 1.1249 1.1576 1.1910 1.2250 1.2597 1.2950 1.3310 1.4049 1.5209 1.0406 1.1699 1.2155 1.2625 1.3108 1.3605 1.4116 1.4641 1.5735 1.7490 un 1.0510 1.1041 1.2167 1.2763 1.3382 1.4026 1.4693 1.6105 2.0114 1.0615 1.1262 1.1941 1.2653 1.3401 1.4185 1.5007 1.5869 1.6771 1.7716 1.9738 2.3131 1.1487 1.4071 1.7138 1.8280 2.2107 2.6600 1.1717 1.2668 1.4775 1.8509 1.9926 2.1436 2.4760 3.0590 1.0937 1.1951 1.3048 1.4233 1.5513 1.6895 1.8385 1.9990 2.1719 2.3579 2.7731 3.5179 10 1.1046 1.2190 1.3439 1.4802 1.6289 1.9672 2.1589 2.5937 3.1058 4.0456 1.1157 1.2434 1.5395 1.7103 1.8983 2.1049 2.3316 2.5804 3.4785 4.6524 1.1268 1.2682 1.4258 1.6010 1.7959 2.0122 2.2522 2.5182 2.8127 3.1384 3.8960 5.3503 1.2936 1.4685 1.8856 2.1329 2.4098 2.7196 3.0658 3.4523 4.3635 6.1528 14 1.1495 1.3195 1.7317 2.2609 2.5785 3.3417 7.0757 15 1.1610 1.3459 1.5580 1.8009 2.0789 2.3966 2.7590 3.1722 3.6425 4.1772 5.4736 8.1371 16 1.1726 1.3728 1.6047 1.8730 2.1829 2.5404 2.9522 3.4259 3.9703 4.5950 6.1304 9.3576 17 1.1843 1.4002 1.6528 1.9479 2.6928 3.1588 3.7000 4.3276 6.8660 10.7613 18 1.1961 1.4282 1.7024 2.0258 2.4066 2.8543 3.3799 3.9960 4.7171 5.5599 7.6900 12.3755 19 1.2081 1.4568 2.1068 3.0256 4.3157 5.1417 6.1159 8.6128 14.2318 20 1.2202 1.4859 1.8061 2.1911 2.6533 3.2071 3.8697 4.6610 5.6044 6.7275 9.6463 16.3665 25 1.6406 2.0938 2.6658 4.2919 5.4274 6.8485 8.6231 10.8347 17.0001 32.9190 30 1.3478 1.8114 2.4273 3.2434 4.3219 5.7435 7.6123 10.0627 13.2677 17.4494 29.9599 66.2118 35 1.4166 1.9999 2.8139 3.9461 5.5160 7.6861 10.6766 14.7853 20.4140 28. 1024 52.7996 133.1755 40 1.4889 2.2080 3.2620 4.8010 7.0400 10.2857 14.9745 21.7245 31.4094 93.0510 267.8635 Used to compute the future value of a known present amount. For example: What is the accumulated value of $3,000 invested today at 8% compounded quarterly for 5 years? Using the factors of n = 20 and i = 2%% (20 quarterly periods and a quarterly interest rate of 2%), the factor is 1.4859. The accumulated value is $4,457.70 ($3,000 x 1.4859).( 1 + 1 ) ^ TABLE B. 3* Fresent Value of an Annuity' Of 1 0.9901 0.9804 0.9709 0.9515 0.9524 0. 9434 0.9345 0.9259 0.9174 0.9091 0. 8929 0. 8695 1.9704 1.9415 1.91.35 1. 8:861 1. 8594 1.833/4 1. 8:080 1 .7833 1.7591 1. 735.5 1. 6901 1. 5257 2.8839 2.8286 2.1751 2.7232 2.6730 2.6243 2.5771 2.5313 2.4869 2.4018 2.2832 3.9020 3.8077 3.7171 3.5450 3.4651 3.3.872 3.3121 3.2397 3. 1699 3.0373 2.8550 4. 85.34 4 . 7135 4.5797 4.4518 4.3295 4. 2124 4 . 10.02 3.9927 3.8897 3.7908 3.6048 3.3522 5. 795.5 5. 5014 5. 4172 5. 2421 5. 0757 4.9173 4 . 7565 4.5229 4.4859 4. 35.53 4. 1 1 14 3. 78:45 6. 7282 5.4720 6 . 23.03 5. 78.54 5.5824 5. 3893 5 . 205.4 5. 0.3.30 4. 8:58.4 4.56.38 4. 1604 7.6517 7.325.5 7.0197 6.7327 5. 45.32 6. 2098 5.9713 5. 7456 5.5348 5. 3.349 4. 9576 4.4873 8.5650 8. 1622 7. 7861 7.4353 7 . 1078 6. 8:017 5.5152 5.2459 5. 9952 5.7590 4. 7716 9.4713 8.9825 8. 1109 7.7217 7. 3601 7.0235 5.7101 5.4177 5. 14:45 5. 01 8B 10.3676 9. 7858 9. 2526 8.7605 8.3.054 7. 8.869 7.4987 7. 1390 5.8052 6. 4951 5.9377 5. 23.37 11. 25.5 1 10.575.3 9.9540 8.85.33 8.38318 7.9427 7.5351 7. 1607 5.8137 5. 194.4 5. 4205 12. 13.37 11. 348.4 10. 6350 9.98515 9.3936 8.8527 8.3577 7.90.38 7. 4869 7. 1034 5.4235 5.58:31 14 13.0037 12.1062 1 1. 2951) 10.5631 9.8986 9. 2950 8.745.5 8.24:42 7. 7862 7. 3657 5.7245 15 13.8651 12.8493 1 1.9379 1 1.1 184 10.3797 9.7127 9. 1079 8.5595 8.0607 7. 5061 5.8109 5. 8:474 14.7179 13.5777 12.561 1 1 1. 6523 10.8378 10.1050 9.4465 8.3125 7.8237 5.9740 5.9542 15.5623 14.2919 13. 1651 12. 1657 11.2741 10.4773 9. 75.32 9. 1215 8:5436 8.0215 7 . 1 196 6. 0472 18 15.3983 14.9920 13.75.35 12.6593 1 1. 6896 10.8275 9.3719 8.75.50 8. 2014 7.2497 6. 1280 19 17 . 2260 15.6785 14.32.38 13. 1339 12.0853 1 1. 1581 10. 3.356 9.50.35 8.9501 8.3549 7. 3658 6. 1982 20 18.04.56 15.3514 14.8775 13.5903 12.4522 1 1.4690 10.5040 9. 81.81 9. 1285 3.51.35 5. 2593 25 22.0232 19.5235 17.4131 15. 5221 14.09.39 12.78:34 1 1. 65.36 10.6748 9.8220 9.0770 7. 8431 5. 4541 30 25. 8:077 22.3965 19.60.04 17. 2920 15. 3725 13.7648 12.4090 1 1.2578 10.2737 9. 4269 8.05.52 6.5650 35 29.4086 24.9985 21.4872 18.56:45 16.3742 14.4982 12.947 7 1 1. 6545 10.5658 9.5:442 8.175.5 6. 5160 32. 8:347 23.1148 19. 7928 17 .1591 15.0463 13.3.317 1 1.9246 10.7574 9. 7791 8. 24.38 6.5418 " Used to calculate the present value of a series of equal payments made at the end of each period . For example : What is the present Value of $ 2, AND PER Year for INVESTS assuming* an annual interest rate of $7. Forin = 10. 1 = 541, the PV Factor is $. HITT. $ 2. 0`` PET VEST for 10 years is the Equivalent of $ 17. 875 today 1 {]. ON* 6. + ITTYf = [( 1 + 130 - 1 Vi TABLE B. 4} Future Value of an Annuity Of 1 1. 0,000 1. 010.00 1. 00,00 1.0.000 1. 0.000 1.00.00 1.0000 1.0.000 1.0.000 1.0.000 1. 00,00 1.0.000 2.0100 2.0200 2.0300 2.0400 2.0600 2.0700 2.0800 2.0900 2.1000 2. 1200 2.1500 3.0301 3.0504 3.0909 3. 1216 3. 1525 3. 1836 3.2149 3. 2464 3. 2781 3.3100 3.3744 3.4725 4. 05014 4.1215 4. 1836 4. 2465 4.3101 4. 3746 4.4390 4.5051 4.5731 4. 6410 4. 7793 4.9934 5. 1010 5. 2040 5. 3091 5.4163 5.5256 5. 6371 5.7507 5. 8565 5.9847 6.1051 5. 3528 6.7424 6.3:081 5. 458.4 5. 8:019 5.9753 7 . 153.3 7. 3.359 7.5233 7.7156 8. 1 152 8.7537 7.2135 7.43.43 7.8983 8.1420 8. 39.38 8.6540 8.9228 9. 20:04 9.4872 10.0890 1 1. 0568 8 . 2857 8.58:30 8 .8923 9. 2142 9.5491 9.8975 10. 2598 10.5365 1 1.0285 11.4359 12.2997 13. 7208 9.3685 9. 7545 10.5828 1 1.0265 1 1.9780 12.4875 13.0210 13.5795 14.7757 16.7858 10. 452 2 10.9497 11.45.39 12.0.051 12.5779 13. 1808 13.8164 14.4865 15.9374 17. 54.87 20.3037 11.5658 12. 1687 12. 8078 13.4854 14.2058 14.9716 15. 7836 16. 5455 17.5603 18.5312 20. 6546 24. 3493 12.6825 13.4121 14.1920 15.0258 15.9171 17.8:885 18.9771 20. 1407 21. 38:43 24. 13.31 29.01017 13.8093 14.68:03 15. 5178 16.6268 17 .7130 18. 8:821 20. 1405 21.4953 22.95.34 24.5227 28.0291 34.3519 14 14.9474 15.9739 17.085.3 18.2919 19.5985 21.0151 22.5.505 24.2149 20.0192 27.9750 32.3926 10.5047 16.0959 17.2934 18.5989 20.0236 21.57 86 23. 2750 25. 1290 27. 1521 29.3609 31. 7725 37. 2797 17.5.8:04 17.2579 18.6:393 20.1559 21.8245 23.6575 25.6725 27. 8:8 8 1 30.3243 33.00.34 35.9497 42.75.33 55. 7175 18. 43.04 20.0121 21.7616 23.6975 25. 8:404 28. 2129 30.8:402 3.3.7502 36.9737 40.5447 48.8:8:37 65.0751 19.5147 21.4123 23.4144 25. 6454 28.1324 30.9057 33.9990 37.4502 41. 3013 45.5092 55.7497 75.8:304 20.8109 22.8405 25. 1165 27.6712 30.5390 3.3 . 7500 37 . 3790 41.4453 46. 0185 51. 1591 $3.4397 8:8. 21 1 8 22.0190 24.2974 25.8704 29.7781 3.3.0650 36. 7856 40.995.5 45. 7520 51. 1501 72.0524 102.4436 25 28. 2432 32.0303 36. 4593 41.6459 47.7271 54. 8545 5.3.2490 73.1059 8:4.7009 98.3471 133.3.3.35 212.7930 30 34. 7849 40.5681 47.5754 56.0849 65. 438% 79.0582 94. 4608 1 13. 2832 136.3075 164. 4940 241.3327 4.34 . 7451 35 41.6503 49.9945 5.0.4521 73.6522 90.3203 1 1 1.4348 1.38. 2369 172.3168 215. 7108 271.0244 431. 65.35 8:81 . 1702 40 48.8:864 60. 4020 75.4013 95.025.5 120.79.98 154. 7620 199. 6:351 259.0565 3.37.8:824 442.5926 767.0914 1. 779.0903 * Used to calculate the future value of a series of equal payments made at the end of each period . For example . What is the future value of $4, A` PER Year for E years assuming an annual interest rate of $7 . For in = { . i = BY`), the FV factor is 7. 7359. $4. `^ Per Year for { years accumulates to $29}13.60 154.0^0* 7.3.3.54)