Question
Part 1. A manager wishes to determine whether the mean times required to end a certain project differ for the three levels of employee training.
Part 1.A manager wishes to determine whether the mean times required to end a certain project differ for the three levels of employee training. He randomly selected 8 employees with each of the three levels of training (beginner, intermediate, and advanced). Does the data provide sufficient evidence to indicate that the mean times required to finish a certain task differ based on training?
Beginner | Intermediate | Advanced |
10.5 | 6.5 | 3.5 |
11.0 | 10.5 | 7.5 |
15.5 | 11.0 | 10.25 |
21.5 | 7.5 | 6.25 |
32.0 | 18.0 | 4.0 |
12.0 | 7.0 | 5.75 |
22.5 | 14.5 | 2.5 |
30.0 | 13.5 | 3.5 |
Mean: 19.38 | Mean: 11.06 | Mean: 5.41 |
Grand Mean: 11.95 |
*Dependent variable: time in hours to complete the project (continuous DV)
*Independent variable: level of training (categorical: beginner, intermediate, advanced)
*Make sure to show all work to get partial credit*
*Make sure to show your responses using proper statistical notation*
*It is acceptable to use Microsoft Excel if you include the spreadsheet.*
- What are the null and alternative hypotheses for this one-way ANOVA?
- Using a one-way ANOVA, is there a significant difference among the levels of training at p< .05
Part 2. Using a topic of your own interest, develop a study that can be analyzed using a one-way ANOVA. Remember, the example must include one categorical IV, and one continuous DV, and be a between subjects design. You don't need to conduct the ANOVA, just discuss the types of variables and the types of data required.
Take this dataset and enter it into SPSS. Run a one-way ANOVA. Do the hand calculations match your SPSS output? Include a screen shot of the SPSS output.
Table: Q scores for Tukey's method | ||||||||||||||||||||
a = 0.05 | a = 0.01 | |||||||||||||||||||
k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
df | df | |||||||||||||||||||
1 | 18.0 | 27.0 | 32.8 | 37.1 | 40.4 | 43.1 | 45.4 | 47.4 | 49.1 | 1 | 90.0 | 135 | 164 | 186 | 202 | 216 | 227 | 237 | 246 | |
2 | 6.08 | 8.33 | 9.80 | 10.88 | 11.73 | 12.43 | 13.03 | 13.54 | 13.99 | 2 | 13.90 | 19.02 | 22.56 | 25.37 | 27.76 | 29.86 | 31.73 | 33.41 | 34.93 | |
3 | 4.50 | 5.91 | 6.82 | 7.50 | 8.04 | 8.48 | 8.85 | 9.18 | 9.46 | 3 | 8.26 | 10.62 | 12.17 | 13.32 | 14.24 | 15.00 | 15.65 | 16.21 | 16.71 | |
4 | 3.93 | 5.04 | 5.76 | 6.29 | 6.71 | 7.05 | 7.35 | 7.60 | 7.83 | 4 | 6.51 | 8.12 | 9.17 | 9.96 | 10.58 | 11.10 | 11.54 | 11.92 | 12.26 | |
5 | 3.64 | 4.60 | 5.22 | 5.67 | 6.03 | 6.33 | 6.58 | 6.80 | 6.99 | 5 | 5.70 | 6.98 | 7.80 | 8.42 | 8.91 | 9.32 | 9.67 | 9.97 | 10.24 | |
6 | 3.46 | 4.34 | 4.90 | 5.30 | 5.63 | 5.90 | 6.12 | 6.32 | 6.49 | 6 | 5.24 | 6.33 | 7.03 | 7.56 | 7.97 | 8.32 | 8.61 | 8.87 | 9.10 | |
7 | 3.34 | 4.16 | 4.68 | 5.06 | 5.36 | 5.61 | 5.82 | 6.00 | 6.16 | 7 | 4.95 | 5.92 | 6.54 | 7.00 | 7.37 | 7.68 | 7.94 | 8.17 | 8.37 | |
8 | 3.26 | 4.04 | 4.53 | 4.89 | 5.17 | 5.40 | 5.60 | 5.77 | 5.92 | 8 | 4.75 | 5.64 | 6.20 | 6.62 | 6.96 | 7.24 | 7.47 | 7.68 | 7.86 | |
9 | 3.20 | 3.95 | 4.41 | 4.76 | 5.02 | 5.24 | 5.43 | 5.59 | 5.74 | 9 | 4.60 | 5.43 | 5.96 | 6.35 | 6.66 | 6.91 | 7.13 | 7.33 | 7.49 | |
10 | 3.15 | 3.88 | 4.33 | 4.65 | 4.91 | 5.12 | 5.30 | 5.46 | 5.60 | 10 | 4.48 | 5.27 | 5.77 | 6.14 | 6.43 | 6.67 | 6.87 | 7.05 | 7.21 | |
11 | 3.11 | 3.82 | 4.26 | 4.57 | 4.82 | 5.03 | 5.20 | 5.35 | 5.49 | 11 | 4.39 | 5.15 | 5.62 | 5.97 | 6.25 | 6.48 | 6.67 | 6.84 | 6.99 | |
12 | 3.08 | 3.77 | 4.20 | 4.51 | 4.75 | 4.95 | 5.12 | 5.27 | 5.39 | 12 | 4.32 | 5.05 | 5.50 | 5.84 | 6.10 | 6.32 | 6.51 | 6.67 | 6.81 | |
13 | 3.06 | 3.73 | 4.15 | 4.45 | 4.69 | 4.88 | 5.05 | 5.19 | 5.32 | 13 | 4.26 | 4.96 | 5.40 | 5.73 | 5.98 | 6.19 | 6.37 | 6.53 | 6.67 | |
14 | 3.03 | 3.70 | 4.11 | 4.41 | 4.64 | 4.83 | 4.99 | 5.13 | 5.25 | 14 | 4.21 | 4.89 | 5.32 | 5.63 | 5.88 | 6.08 | 6.26 | 6.41 | 6.54 | |
15 | 3.01 | 3.67 | 4.08 | 4.37 | 4.59 | 4.78 | 4.94 | 5.08 | 5.20 | 15 | 4.17 | 4.84 | 5.25 | 5.56 | 5.80 | 5.99 | 6.16 | 6.31 | 6.44 | |
16 | 3.00 | 3.65 | 4.05 | 4.33 | 4.56 | 4.74 | 4.90 | 5.03 | 5.15 | 16 | 4.13 | 4.79 | 5.19 | 5.49 | 5.72 | 5.92 | 6.08 | 6.22 | 6.35 | |
17 | 2.98 | 3.63 | 4.02 | 4.30 | 4.52 | 4.70 | 4.86 | 4.99 | 5.11 | 17 | 4.10 | 4.74 | 5.14 | 5.43 | 5.66 | 5.85 | 6.01 | 6.15 | 6.27 | |
18 | 2.97 | 3.61 | 4.00 | 4.28 | 4.49 | 4.67 | 4.82 | 4.96 | 5.07 | 18 | 4.07 | 4.70 | 5.09 | 5.38 | 5.60 | 5.79 | 5.94 | 6.08 | 6.20 | |
19 | 2.96 | 3.59 | 3.98 | 4.25 | 4.47 | 4.65 | 4.79 | 4.92 | 5.04 | 19 | 4.05 | 4.67 | 5.05 | 5.33 | 5.55 | 5.73 | 5.89 | 6.02 | 6.14 | |
20 | 2.95 | 3.58 | 3.96 | 4.23 | 4.45 | 4.62 | 4.77 | 4.90 | 5.01 | 20 | 4.02 | 4.64 | 5.02 | 5.29 | 5.51 | 5.69 | 5.84 | 5.97 | 6.09 | |
24 | 2.92 | 3.53 | 3.90 | 4.17 | 4.37 | 4.54 | 4.68 | 4.81 | 4.92 | 24 | 3.96 | 4.55 | 4.91 | 5.17 | 5.37 | 5.54 | 5.69 | 5.81 | 5.92 | |
30 | 2.89 | 3.49 | 3.85 | 4.10 | 4.30 | 4.46 | 4.60 | 4.72 | 4.82 | 30 | 3.89 | 4.45 | 4.80 | 5.05 | 5.24 | 5.40 | 5.54 | 5.65 | 5.76 | |
40 | 2.86 | 3.44 | 3.79 | 4.04 | 4.23 | 4.39 | 4.52 | 4.63 | 4.73 | 40 | 3.82 | 4.37 | 4.70 | 4.93 | 5.11 | 5.26 | 5.39 | 5.50 | 5.60 | |
60 | 2.83 | 3.40 | 3.74 | 3.98 | 4.16 | 4.31 | 4.44 | 4.55 | 4.65 | 60 | 3.76 | 4.28 | 4.59 | 4.82 | 4.99 | 5.13 | 5.25 | 5.36 | 5.45 | |
120 | 2.80 | 3.36 | 3.68 | 3.92 | 4.10 | 4.24 | 4.36 | 4.47 | 4.56 | 120 | 3.70 | 4.20 | 4.50 | 4.71 | 4.87 | 5.01 | 5.12 | 5.21 | 5.30 | |
1 | 2.77 | 3.31 | 3.63 | 3.86 | 4.03 | 4.17 | 4.29 | 4.39 | 4.47 | 1 | 3.64 | 4.12 | 4.40 | 4.60 | 4.76 | 4.88 | 4.99 | 5.08 | 5.16 |
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started