Please answer these questions use keyboard. This question let me so confused, please don't write on the paper. Thanks so much.
1.Insert two columns to the right of the data column.
(a)In the first inserted column, now column B, provide the calculated Z score for 2,000 rows of data and in the second inserted column, now column C, provide the calculated t score for 2,000 rows of data - display 4 decimal places and document with a cell comment when to use the Z score and when to use the t score.
(b)Program the calculations to result in a blank cell if the corresponding cell in column A is empty.
2.Provide a margin of error and confidence interval calculation for the mean using t and a confidence interval for the standard deviation using X2 - use a cell comment to document when to use the margin of error and confidence interval and when not to.
?
B D E H I J K L M N P Q R S T U V W X Y Data Standardized Sample Population Sample (n ) or Population (N) Size 0 Mean Median Mode (Multimode Function) #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 90 Percent Range for Excel's Sample Skewness Coefficient Lower Upper Lower Upper #N/A #N/A n 5% 5% n 5% 5% Skewed Left Normal Skewed Right Trimmed Mean #NUM! #NUM! Skewness 0 - 0.84 0.84 90 - 0.41 0.41 Geometric Mean #NUM! #NUM! 30 - 0.69 0.69 100 - 0.40 0.40 Mid-Range 0.00 0.00 40 - 0.61 0.61 150 - 0.33 0.33 Mid-Hinge In/a In/a 50 - 0.55 0.55 200 - 0.28 0.28 60 - 0.51 0.51 300 - 0.23 0.23 Standard Deviation #DIV/0! #DIV/O! 70 - 0.47 0.47 400 - 0.20 0.20 Estimated Standard Deviation 0.0 0.00 80 - 0.44 0.44 500 - 0.18 0.18 Coefficient of Variation (CV) | #DIV/0! | #DIV/0! Minimum 90 Percent Range for Excel's Sample Kurtosis Coefficient Lower Upper Lower Upper Maximum 5% Platykurtic 5% 5% 5% Mesokurtio Leptokurtio Kurtosis 2 0 Range Kurtosisso 40 - 0.89 1.35 100 - 0.62 0.88 1 #NUM! #NUM! 50 - 0.82 1.23 150 - 0.53 0.71 Quartile 3 #NUM! #NUM! 60 - 0.76 1.13 200 - 0.47 0.62 Interquartile Range (IQR) #NUM! #NUM! 70 - 0.72 1.04 300 - 0.40 0.50 80 - 0.68 0.98 400 - 0.35 0.44 Skew #DIV/O! #DIV/O! 90 - 0.65 0.92 500 - 0.32 0.39 Kurtosis #DIV/0! #DIV/O! Standard Deviation #VALUE! | #VALUE! Expected = 68.26% #VALUE!|#VALUE! #DIV/0! 0 #DIV/O! 68.26% 2 Standard Deviations #VALUE!|#VALUE! Expected = 95.44% #VALUE! |#VALUE! #DIV/0! 0 0 #DIV/O! 95.44% Standard Deviations #VALUE! |#VALUE! Expected = 99.73% #VALUE! |#VALUE! 99.73% #DIV/0! 0 0#DIV/O! Empirical Rule Based Low Unusal Values Low Outliers H - 30 H - 20 H - 10 u+ 10 4 + 20 H + 30 ooo . High Unusual Value High Outliers Boxplot Based Inner Fence (lower) _ #NUM! Outer Fence (lower . #NUM! x - H inner Fence (upper) _ #NUM Outer Fence (upper) #NUM! Z Score 21 2 130 130 130 130 Low Outliers Mean 100 100 100 100 Low Extreme Outliers Standard Deviation 15 15 15 15 High Outliers High Extreme Outliers D Descriptives Growth Rate Chebyshev +A B C D E F G H I J K L M N O P Average Growth Rate: The rate by which a base amount must grow to reach a specified n-1 Xn amount over a specified number of periods Average Growth Rate X1 Double click n to watch video o o X 1 Xn #N/A Avg Growth Rate #N/A #DIV/O! Example Proof SL O C O JOU A W N OO D VAUAWN Period 1 75 n 6 75. 0000 Period 2 110 X / 75 82. 1156 Period 3 80 Xn 118 89. 9062 Period 4 120 98. 4359 Period 5 135 Avg Growth Rate 9.49% 107. 7750 Period 6 118 118. 0000 160 140 120 100 23 80 24 60 40 25 20 26 0 27 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 28 29A B C D E 1 Chebyshev's Theorem W N 1 k 2 X100 8 9 10 K = number of standard deviations from the mean 11 Minimum % of observations within K standard deviations of 12 K the mean 13 0.00% 14 75.00% W N 15 88.89% 16 93.75% 17 96.00% 18 6 97.22% 19 97.96% 20 98.44% 21 98.77% 22 10 99.00%