Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Please help me answer the following questions by following the same format that the examples show. The examples are going to be attached to the
Please help me answer the following questions by following the same format that the examples show. The examples are going to be attached to the exercises.
First Exercises: Numbers 8, 18, and 30
\fSolve the initial-value problem. 13. y' = x2 + 2x - 3; )(0) = 4 14. y' = 2x, y(1) = 7 15. y' = (3x + 1; y(0) = 2 16. y' = sin x - x, y(0) = 3 17. f'(x) = x23 - x,f(1) = -6 18. f'(x) = 1/x - 2x + x1/2; f(4) = 2 19. y' - xV/ x2 + 1; y(0) = 3 20. y' = xe*; y(0) = 1 21. y' = x3/(x* + 1)2; y(1) - -2 22. y' = sin x/(2 + cos x); y( 7) = 3 23. y' = xex; y(0) = 2 24. y' = x sin x; y(0) = 3 25. y' = In x; y(1) = 2 26. y' = x In x, y(1) = 0 27. y' = x sin(x2); y(0) = 3 28. y' = exVex + 3; )(0) = 1 Solve the higher-order initial-value problem. 29. f"(x) = 2;f(0) = 3 and f'(0) = 4\fSolve the differential equation. Be sure to check for possible constant solutions. If necessary, write your 27. y' answer implicitly. 28. y' 1. ay = 4xy 2. 3/2 ay = 5X dx dx 29. y' 3. X 4. y' = x2y3 30. y' 2y 31. So xVy2 + 1 6. y' ex+1 is y ey 32. So dy x2 sec y 7. 8. ay = exy Vex + 4 dx (x 3 + 1 ) 3 dx all 9. + 10.2 dy = 12er y3 APP X 33. U 1 1. y' = x cosy 12. y' = ytys a) Vx ex+ 2y 13. y' = 14. y' sin y + cos y ey+ 1 tw b) 15. ay 16. dy _sinLy de ( 12 + 1 ) (1 4 + 1 ) di 34. C in 17. dy = 3x2(y - 2)2 18. dy y2 - 1 W dx dx dr Solve the initial-value problem. If necessary, write your answer implicitly. 19/ 3y 2 dy dx - 2x = 0; y(2) = 5\fFind : dz , dz, dz d x dy dx tz-3) and dz dy 10 1-5 ) 1 ) 2 = 2 X - 3xy dx d2 = 2- 34-7 62 (- 21 - 3 ) - 2 - 3(-37 = 111 dz = 0 - 3x = [- 3x => dz dy dy (0 1 - 5) = - 3 (0 ) = 10] 3 ) 2 = 3x 2 - 2 x y + y x ( ) ) lol d2 = 3 (2 x ) - 2y to d x L7 6X - 24 / 1- 2 1-3) 6(- 27 - 2 ( - 3 ) = 1- 6) (2 = 0 - 2X ( 1) + 1 dy = - 2 x + 1 10 1 - 5 ) - 2(0) + 1 = 1] 5 ) 2 = 2X - 3y no constant so don't plug in 42 = 2 - 0 = 12 - Fx ( - 2 , -4 ) = 12 dx dy dz = 0 - 3 = 3 -7 fy (- 3,-2) =131\f1 ) f ( x , y ) = * 2 + x y + y ? - y fx = 2 x + y fy = x + 24 - 1 f x x = 2 FY X = 1 fxy = 1 FYY = 2 D/= 2 ( 2) - [132 / D - (x x fry - [ xy ] = 370 fxx = 270 7.2 goes at the end . Minimum- ( -3131-3) 2 X 14 2 0 Solve for fx = 2x + y= 0 -> y=- 2x - 2 7 - 2y Solup fy = x+ zy-1=0=7 x+2(-2)-1=0 x - 4 x - 1=0 y = - 2 x - 3X = 1 y= - 2 ( -3 ) 3 - 3 X = - Y = 3 For Z use the original Equation z = f ( - 1 /3 , 2 / 3 ) WI - = ( 3 ) 2 + ( 3) ( 3 ) + (3)2- 27 ) f ( X ly ) = x 2 + y 2 - 2x + ly - 2 fy - 2 4 + 1 fx = 2 x - 2 fxx = 2 FVX = 0 fxy = 0 fy = 2 D = 2 ( 2 ) - [0] 2 = 470 f x X = 2 7 0 Relative Minimum : (17-21 - 2 ) 2 x - 4-0 + 12 +2 24 + 4= 0 fx = 2 x - 2 = 0 = > X= 1 fy = 2 4 + 4 = 0 = 7 1= - 2 y = - 2 2 = f ( 1 1 - 2 ) = ( 1)2 + ( - 2)2- 2 ( 1 ) + 4 ( - 2) - 2 2= - 7 a f ( x y ) = * 2 + y 2 + 2 x - Lly fx = 2 X +2 fy = 24 - 4 fxx = 2 fyx = 0 fxy = 0 fyy = 2 D = 2 ( 2 ) - [012 = 470 fxy = 270 Minimum : ( -1,21-5)(x = 2 X 42 = 7 - 1 2 x +2=0 24-up0 -2 - 2 2x- -2 X = - 1 1/ 2 2 2 = (- 1)2+ (272+ 2(-1)-4(2) = -5 1 1 ) f (x ,y ) = 4 x 2 - 42 fx = 8x fy = - 24 fx x - 8 f yx = 0 FX y = 0 Fyy = - 2 1) = 8 ( 2 ) - [032 =16 fXXX = 870 0 4 - 16 Saddle paint (0,0,0) fx = 8x = >0 8) 8 2 X 2 0 fy = 24 = > 0 Y = 2 Z = (0, 0) = 1(0)2-(0)2(7.3) Maximum- Minimum Problems finding the Relative Extrema for Z = F ( x Ly ) Theorem. Second Derivative test D = f x x fyy - [ f xy] ? a greats If DJO and fxx 70 : Relative Minimum * IF D 70 and fox co : Relative Minimum If D ZO : saddle point ex D = O . No informationStep by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started