Question
PROBLEM 1 % Function to compute the length of the hypotenuse of a % right triangle given the lengths of the other two sides %
PROBLEM 1
% Function to compute the length of the hypotenuse of a
% right triangle given the lengths of the other two sides
%
% a - The length of one side
% b - The length of the other side
% c - The length of the hypotenuse
%
% function c = hyp(a,b)
%
function c = hyp(a,b)
c = sqrt(a^2 + b^2) ;
PROBLEM 2
% Unit-step function defined as 0 for input argument values
% less than zero, 1/2 for input argument values equal to zero,
% and 1 for input argument values greater than zero. This function
% uses the sign function to implement the unit-step function.
% Therefore value at t = 0 is defined. This avoids having undefined
% values during the execution of a program that uses it.
%
% function y = us(x)
function y = us(x)
y = (sign(x) + 1)/2 ;
PROBLEM 3
% Function to compute the ramp function defined as 0 for
% values of the argument less than or equal to zero and
% the value of the argument for arguments greater than zero.
% Uses the unit-step function us(x).
%
% function y = ramp(x)
%
function y = ramp(x)
y = x.*us(x) ;
PROBLEM 4
% Unit rectangle function. Uses the unit-step function us(x).
%
% function y = rect(x)
%
function y = rect(x)
y = us(x+0.5) - us(x-0.5) ;
PROBLEM 5
% Program to graph some demonstrations of continuous-time function combinations
t = 0:1/240:6 ; % Vector of time points for graphing x1
% Generate values of x1 for graphing
x1 = exp(-t).*sin(20*pi*t) + exp(-t/2).*sin(19*pi*t) ;
subplot(2,1,1) ; % Graph in the top half of the figure window
p = plot(t,x1,'k') ; % Display the graph with black lines
set(p,'LineWidth',2) ; % Set the line width to 2
% Label the abscissa and ordinate
xlabel('\itt','FontName','Times','FontSize',24) ;
ylabel('x_1({\itt})','FontName','Times','FontSize',24) ;
set(gca,'FontName','Times','FontSize',18) ; grid on ;
PROBLEM 6
t = -2:1/240:2 ; % Vector of time points for graphing x2
% Generate values of x2 for graphing
x2 = rect(t).*cos(20*pi*t) ;
subplot(2,1,2) ; % Graph in the bottom half of the figure window
p = plot(t,x2,'k') ; % Display the graph with black lines
set(p,'LineWidth',2) ; % Set the line width to 2
% Label the abscissa and ordinate
xlabel('\itt','FontName','Times','FontSize',24) ;
ylabel('x_2({\itt})','FontName','Times','FontSize',24) ;
set(gca,'FontName','Times','FontSize',18) ; grid on ;
PROBLEM 7
function y = g(t)
% Calculate the functional variation for each range of time, t
y1 = -4 - 2*t ; y2 = -4 + 3*t ; y3 = 16 - 2*t ;
% Splice together the different functional variations in
% their respective ranges of validity
y = y1.*(-2 % Program to graph the function, g(t) = t^2 + 2*t - 1 and then to % graph 3*g(t+1), g(3*t)/2 and -2*g((t-1)/2). tmin = -4 ; tmax = 20 ; % Set the time range for the graph dt = 0.1 ; % Set the time between points t = tmin:dt:tmax ; % Set the vector of times for the graph g0 = g(t) ; % Compute the original g(t) g1 = 3*g(t+1) ; % Compute the first change g2 = g(3*t)/2 ; % Compute the second change g3 = -2*g((t-1)/2) ; % Compute the third change % Find the maximum and minimum g values in all the scaled or shifted % functions and use them to scale all graphs the same gmax = max([max(g0), max(g1), max(g2), max(g3)]) ; gmin = min([min(g0), min(g1), min(g2), min(g3)]) ; % Graph all four functions in a 2 by 2 arrangement % Graph them all on equal scales using the axis command % Draw grid lines, using the grid command, to aid in reading values subplot(2,2,1) ; p = plot(t,g0,'k') ; set(p,'LineWidth',2) ; xlabel('t') ; ylabel('g(t)') ; title('Original Function, g(t)') ; axis([tmin,tmax,gmin,gmax]) ; grid ; subplot(2,2,2) ; p = plot(t,g1,'k') ; set(p,'LineWidth',2) ; xlabel('t') ; ylabel('3g(t+1)') ; title('First Change) ; axis([tmin,tmax,gmin,gmax]) ; grid ; subplot(2,2,3) ; p = plot(t,g2,'k') ; set(p,'LineWidth',2) ; xlabel('t') ; ylabel('g(3t)/2') ; title('Second Change) ; axis([tmin,tmax,gmin,gmax]) ; grid ; subplot(2,2,4) ; p = plot(t,g3,'k') ; set(p,'LineWidth',2) ; xlabel('t') ; ylabel('-2g((t-1)/2)') ; title('Third Change) ; axis([tmin,tmax,gmin,gmax]) ; grid ; % Program to graph the even and odd parts of a function PROBLEM 8 function GraphEvenAndOdd t = -5:0.1:5 ; % Set up a time vector for the graph ge = (g(t) + g(-t))/2 ; % Compute the even-part values go = (g(t) - g(-t))/2 ; % Compute the odd-part values % Graph the even and odd parts subplot(2,1,1) ; ptr = plot(t,ge,'k') ; set(ptr,'LineWidth',2) ; grid on ; xlabel('\itt','FontName','Times','FontSize',24) ; ylabel('g_e({\itt})','FontName','Times','FontSize',24) ; subplot(2,1,2) ; ptr = plot(t,go,'k') ; set(ptr,'LineWidth',2) ; grid on ; xlabel('\itt','FontName','Times','FontSize',24) ; ylabel('g_o({\itt})','FontName','Times','FontSize',24) ; PROBLEM 9 function y = g(x) % Function definition for g(x) y = x.*(x.^2+3) ; % Program to compute the signal energy or power of some example signals dt = 0.1 ; t = -7:dt:13 ; % Set up a vector of times at which to compute the function. Time interval is 0.1 % Compute the function values and their squares x = 4*exp(-t/10).*rect((t-4)/3) ; xsq = x.^2 ; Ex = trapz(t,xsq) ; % Use trapezoidal-rule numerical % integration to find the area under % the function squared and display the result disp(['(a) Ex = ',num2str(Ex)]) ; PLEASE HELP EXPLAIN ON HOW TO COMPLETE CODE. USING FOR MATLAB. THANK YOU.
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started