Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Problem 3. Let S be the shift operator on the set V of all real sequences, as in the Fibonacci notes. Let p(x)=(x)(x) be a

image text in transcribedimage text in transcribed

Problem 3. Let S be the shift operator on the set V of all real sequences, as in the Fibonacci notes. Let p(x)=(x)(x) be a quadratic polynomial with two different real roots =. Let L=p(S). We know L is a linear operator; let W=ker(L). 1. W is the solution space for a certain recurrence relation (also called a difference equation). Which one? 2. Show that (SI)(SI)=(SI)(SI). 3. In the Fibonacci notes we showed that certain eigenvectors of S were contained in W. Which ones, and why? 4. We also claimed, but did not prove, that W is spanned by eigenvectors of S. Since we have an explicit description of the eigenvectors of S, this gives us a formula for the elements of W. That. is, you've solved the recurrence relation: what are the solutions, explicitly? 5. The means to prove that W is spanned by eigenvectors of S is developed in the "even and odd functions" exercises (both versions). We need to show that any wW can be expressed as a sum of an eigenvector for S with eigenvalue and an eigenvector for S with eigenvalue . Think of this as like showing that a function is the sum of an even function (eigenvector for a certain operator for eigenvalue 1) and an odd function (eigenvector for that operator with eigenvalue -1 ). We define two linear operators on W, U(w)=(SI)(w)U(w)=(SI)(w) Show that U sends eigenvectors of S with eigenvalue to 0 . What does it do to eigenvectors of S with eigenvalue ? What can you say about U ? This may make it clear why we define two new operators, P=1U and P=1U. (What does this correspond to in the even and odd situation? What is there?) Show that PP=0 and that P2=P and P2=P. Show that P+P=I. Use this to

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

More Books

Students also viewed these Accounting questions

Question

5. We have often heard caregivers tell their children?

Answered: 1 week ago

Question

b. Where did they come from?

Answered: 1 week ago

Question

c. What were the reasons for their move? Did they come voluntarily?

Answered: 1 week ago

Question

5. How do economic situations affect intergroup relations?

Answered: 1 week ago