Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Problem 3. Reconsider the series of cash flows from Problem 2 Cumulative Month Amount 0 1 2 3 4 5 6 7 8 9 10
| |||||||||||||||||||||||
Problem 3. Reconsider the series of cash flows from Problem 2 | |||||||||||||||||||||||
Cumulative | |||||||||||||||||||||||
Month | Amount | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
CF (1,000s of $) | $400.00 | -700 | 1200 | 600 | 300 | -1000 | -1200 | -400 | -300 | -1000 | 1200 | 400 | 300 | 1000 | -1200 | -400 | -300 | 1000 | 1200 | 400 | 300 | -1000 | |
What uniform periodic payment would you need in order to produce the same NPV as you found in Problem 2 if the MARR yields 15%? | |||||||||||||||||||||||
This is an ordinary annuity (or an annuity in arrears), with a monthly payment schedule. Caution Remember to adjust the | |||||||||||||||||||||||
units for the MARR. Also, watch the signs of your results. | |||||||||||||||||||||||
A. | Use an appropriate equation from Peterson to compute the uniform monthly payment required to produce the same NPV. | ||||||||||||||||||||||
B. | Then, separately, use Excel's PMT function to compute the same value. | ||||||||||||||||||||||
C. | Finally, separately lay out that stream of 20 identical payments and use it to check your results by the same methods as in | ||||||||||||||||||||||
Problem 2. That is, use the CF stream of that ordinary annuity to compute the NPV. | |||||||||||||||||||||||
Note The correct result is the same as Peterson's Annual Equivalent method. (Well ... the same except that you have computed a Monthly Equivalent here). | |||||||||||||||||||||||
Now, what if we change this to an annuity due (or an annuity in advance) and we change the payment schedule to annual? What series | |||||||||||||||||||||||
of uniform payments would we need to provide the same NPV, given that we have a MARR of 15%? | |||||||||||||||||||||||
D. | Rearrange and use an appropriate equation from Peterson to compute the annual payments required to produce the same NPV. | ||||||||||||||||||||||
E. | Separately, use Excel's PMT function to compute the same value. | ||||||||||||||||||||||
F. | Use the CF stream of that annuity due to compute the NPV. | ||||||||||||||||||||||
Problem 2. Consider the following series of cash flows: | |||||||||||||||||||||||
Cumulative | |||||||||||||||||||||||
Month | Amount | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
CF (1,000s of $) | $400.00 | -700 | 1200 | 600 | 300 | -1000 | -1200 | -400 | -300 | -1000 | 1200 | 400 | 300 | 1000 | -1200 | -400 | -300 | 1000 | 1200 | 400 | 300 | -1000 | |
What is the NPV if the MARR yields 15%? Compute your solution by two (2) methods as follows: | |||||||||||||||||||||||
Example. | Compute the PV month-by-month and sum those monthly results to find the NPV. I've done this for you as an example. | ||||||||||||||||||||||
A. | Read through the example provided in the "Example" tab. Explicitly state that you reviewed the example and understand what is happening. | ||||||||||||||||||||||
B. | Then, separately, use Excel's NPV function. | ||||||||||||||||||||||
C. | Now recompute the NPV at a MARR of 65%. I know that is awfully high, but see what happens. Comment about the difference. | ||||||||||||||||||||||
D. | Compute the FV at the end of month 20 at a MARR of 15%. Note I do not know of an Excel function that performs this calculation. | ||||||||||||||||||||||
Example | |||||||||||||||||||||||
n = | 20 | months | |||||||||||||||||||||
iA = | 15% | % per year = MARRAnnual This is an effective annual interest rate. | |||||||||||||||||||||
iM = | 1.171% | % per month = MARRMonthly This is an effective monthly interest rate. | |||||||||||||||||||||
Month = | Cumulative | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Undiscounted CF = | $400.00 | -700 | 1200 | 600 | 300 | -1000 | -1200 | -400 | -300 | -1000 | 1200 | 400 | 300 | 1000 | -1200 | -400 | -300 | 1000 | 1200 | 400 | 300 | -1000 | |
Discount (or PW) Factors = | 1 | 0.988421 | 0.976976 | 0.965663 | 0.954481 | 0.943429 | 0.932505 | 0.921707 | 0.911034 | 0.900485 | 0.890058 | 0.879752 | 0.869565 | 0.859496 | 0.849544 | 0.839707 | 0.829984 | 0.820373 | 0.810874 | 0.801484 | 0.792204 | ||
Discounted CFs = | -700 | 1186.105 | 586.1853 | 289.6989 | -954.481 | -1132.11 | -373.002 | -276.512 | -911.034 | 1080.582 | 356.0233 | 263.9256 | 869.5652 | -1031.4 | -339.818 | -251.912 | 829.9837 | 984.4477 | 324.3495 | 240.4453 | -792.204 | ||
NPV by summing DCFs = | $248.84 | Example |
$248.84 | Example | .. | |||||||||||||||||||||
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started