Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Programming Language: MATLAB 3. Using a while loop to increment i, determine and display the number of positive integers for which i^2.5 is less than

Programming Language: MATLAB

3. Using a while loop to increment i, determine and display the number of positive integers for which i^2.5 is less than 1,000,000.

image text in transcribed

1. Create a 4x4 matrix containing random integer values between 3 and 12. Display matrix and the sum of al its elements. Replace the values of the 2x2 matrix in the center of the 4x4 with zeros. Display the modified 4x4 matrix. 2. Approximate the value of by considering a quarter unit circle enclose inside a square. The shaded quarter circle area is r2/4 = 12/4 = /4. The area of the circle can be approximated by choosing a large number of random points inside the square and counting the percentage that fall inside the quarter circle. The equation of a circle with unit radius centered at the origin is This is rearranged to give so any (x.y) point inside the square is also is inside the black area if The area inside the square is one square unit and so the ratio of points inside the black area represents the area of the black area. Inside a loop, choose a random position inside the square. Increment a counter if the point falls inside the quarter circle. Dividing the counter by the total points used gives the ratio of the black area to 1 square unit of area. Knowing computed black area to equal-4 allows solving for T. Execute the loop a sufficient number of times to obtain an accurate approximate of pi to 3 significant figures. 3. Using a while loop to increment i, determine and display the number of positive integers for which i25 is less than 1,000,000 1. Create a 4x4 matrix containing random integer values between 3 and 12. Display matrix and the sum of al its elements. Replace the values of the 2x2 matrix in the center of the 4x4 with zeros. Display the modified 4x4 matrix. 2. Approximate the value of by considering a quarter unit circle enclose inside a square. The shaded quarter circle area is r2/4 = 12/4 = /4. The area of the circle can be approximated by choosing a large number of random points inside the square and counting the percentage that fall inside the quarter circle. The equation of a circle with unit radius centered at the origin is This is rearranged to give so any (x.y) point inside the square is also is inside the black area if The area inside the square is one square unit and so the ratio of points inside the black area represents the area of the black area. Inside a loop, choose a random position inside the square. Increment a counter if the point falls inside the quarter circle. Dividing the counter by the total points used gives the ratio of the black area to 1 square unit of area. Knowing computed black area to equal-4 allows solving for T. Execute the loop a sufficient number of times to obtain an accurate approximate of pi to 3 significant figures. 3. Using a while loop to increment i, determine and display the number of positive integers for which i25 is less than 1,000,000

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Databases And Information Systems 1 International Baltic Conference Dbandis 2020 Tallinn Estonia June 19 2020 Proceedings

Authors: Tarmo Robal ,Hele-Mai Haav ,Jaan Penjam ,Raimundas Matulevicius

1st Edition

303057671X, 978-3030576714

More Books

Students also viewed these Databases questions