Question
Q1. The values of parameter and exogenous variables of the Simple Keynesian Macroeconomic Model are given below. Compute the solution values of endogenous variables and
Q1. The values of parameter and exogenous variables of the Simple Keynesian Macroeconomic Model are given below. Compute the solution values of endogenous variables and show the solution graphically.
%% ECON 407: Macroeconomic Model
disp('Keynesian Macroeconomic Model')
%% Exogenous Variables
C0=800; % Autonomous Consumption
I=1000; % Investment
G=500; % Government Expenditure
T=500; % Tax Revenue
%% Parameters
c=0.75; % MPC. (0 %% Model 1 % AE=C+I+G; % Aggregate Expenditure % C=C0+c*(Y-T); % Consumption Function % Y=AE; % Equilibrium Condition: GDP = Income = Expenditure %% Solution of the Model m= % Multiplier: m=(1/1-c) Y= % Equilibrium Solution of Y by Substitution Method Yd= % Disposable Income: Yd=Y-T C= % Consumption Function: Y=C0+c*Yd B= % Budget Deficit B=T-G disp('--------------------------------------------- '); disp('Solution of the Model 1:'); disp('--------------------------------------------- '); disp('Aggregate Expenditure AE = C+I+G'); fprintf('Consumption Function C = %g+%g(Y2-T) ',C0,c);); fprintf('Investment I = ); fprintf('Government G = ); fprintf('Consumption C = ); fprintf('Gross Domestic Product Y = ); fprintf('Disposable Income Yd = ); fprintf('Budget Deficit B = ); disp('------------------------------------------------') %% Plot Macroeconomic Model 1 subplot( ); Y=0:9000; C=C0+c*(Y-T); AE=C+I+G; Y45=Y; hold on; yline( ,'k-.', 'G= '); yline( ,'k', 'I= '); yline(0); plot(Y,C,'b', Y,Y45,'r', Y,AE,'b') xlabel('Gross Domestic Product, Y'), ylabel('Aggregate Expenditure, AE, C, I, G'); title('Macroeconomic Model 1'); ylim([-500,9000]); xlim([0,9000]); %% Fiscal Policy: DG=200; disp('Fiscal Policy: Tax Reform'); disp(' Increase in G: DG=200'); disp(' New Level of G: G2=700'); %% Model 2 % AE2=C2+I+G2; % Aggregate Expenditure % C2=C0+c*(Y2-T); % Consumption Function % Y2=AE2; % Equilibrium Condition: GDP = Income = Expenditure %% Solution of the Model G2=G+200; % New value of Government Expenditure Y2= ; % Solution of the Equilibrium Income by Substitution Method Yd2= ; % Disposable Income C2= ; % C2=C0+c*Yd2 B2= ; % Budget Deficit disp('---------------------------------------------- '); disp('Solution of the Model 2:'); disp('---------------------------------------------- ') disp('Aggregate Expenditure AE2 = C2+I+G2'); fprintf('Consumption Function C2 = %g+%g(Y2-T) ',C0,c); fprintf('Investment I = ); fprintf('Government G2 = ); fprintf('Consumption C2 = ); fprintf('Gross Domestic Product Y2 = ); fprintf('Disposable Income Yd2 = ); fprintf('Budget Deficit B2 = ); fprintf(' Multiplier: m = ); disp('-----------------------------------------------') %% Plot Macroeconomic Model 2 subplot( ); Y=0:9000; C2=C0+c*(Y2-T); AE2=C+I+G2; Y45=Y; hold on; yline( ,'k-.','G2='); yline(,'k','I='); yline(0); plot(Y,C,'b', Y,Y45,'r', Y,AE,'b') xlabel('Gross Domestic Product, Y'), ylabel ('Aggregate Expenditure, AE2, C2, I, G2'); title('Macroeconomic Model 2'); ylim([-500,9000]); xlim([0,9000]); %% Plot Budget Deficit subplot( ); Y=0:9000; yline(,'k-.','G2='); yline(,'b','T='); yline(-,'r','B2='); yline(0); xlabel('Gross Domestic Product, Y'), ylabel ('G2, T2, B2'); title('Macroeconomic Model 2'); ylim([-500,9000]); xlim([0,9000]);
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started