Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Q1. The values of parameter and exogenous variables of the Simple Keynesian Macroeconomic Model are given below. Compute the solution values of endogenous variables and

Q1. The values of parameter and exogenous variables of the Simple Keynesian Macroeconomic Model are given below. Compute the solution values of endogenous variables and show the solution graphically.

%% ECON 407: Macroeconomic Model

disp('Keynesian Macroeconomic Model')

%% Exogenous Variables

C0=800; % Autonomous Consumption

I=1000; % Investment

G=500; % Government Expenditure

T=500; % Tax Revenue

%% Parameters

c=0.75; % MPC. (0

%% Model 1

% AE=C+I+G; % Aggregate Expenditure

% C=C0+c*(Y-T); % Consumption Function

% Y=AE; % Equilibrium Condition: GDP = Income = Expenditure

%% Solution of the Model

m= % Multiplier: m=(1/1-c)

Y= % Equilibrium Solution of Y by Substitution Method

Yd= % Disposable Income: Yd=Y-T

C= % Consumption Function: Y=C0+c*Yd

B= % Budget Deficit B=T-G

disp('--------------------------------------------- ');

disp('Solution of the Model 1:');

disp('--------------------------------------------- ');

disp('Aggregate Expenditure AE = C+I+G');

fprintf('Consumption Function C = %g+%g(Y2-T) ',C0,c););

fprintf('Investment I = );

fprintf('Government G = );

fprintf('Consumption C = );

fprintf('Gross Domestic Product Y = );

fprintf('Disposable Income Yd = );

fprintf('Budget Deficit B = );

disp('------------------------------------------------')

%% Plot Macroeconomic Model 1

subplot( );

Y=0:9000;

C=C0+c*(Y-T);

AE=C+I+G;

Y45=Y;

hold on;

yline( ,'k-.', 'G= ');

yline( ,'k', 'I= ');

yline(0);

plot(Y,C,'b', Y,Y45,'r', Y,AE,'b')

xlabel('Gross Domestic Product, Y'), ylabel('Aggregate Expenditure, AE, C, I, G');

title('Macroeconomic Model 1');

ylim([-500,9000]); xlim([0,9000]);

%% Fiscal Policy: DG=200;

disp('Fiscal Policy: Tax Reform');

disp(' Increase in G: DG=200');

disp(' New Level of G: G2=700');

%% Model 2

% AE2=C2+I+G2; % Aggregate Expenditure

% C2=C0+c*(Y2-T); % Consumption Function

% Y2=AE2; % Equilibrium Condition: GDP = Income = Expenditure

%% Solution of the Model

G2=G+200; % New value of Government Expenditure

Y2= ; % Solution of the Equilibrium Income by Substitution Method

Yd2= ; % Disposable Income

C2= ; % C2=C0+c*Yd2

B2= ; % Budget Deficit

disp('---------------------------------------------- ');

disp('Solution of the Model 2:');

disp('---------------------------------------------- ')

disp('Aggregate Expenditure AE2 = C2+I+G2');

fprintf('Consumption Function C2 = %g+%g(Y2-T) ',C0,c);

fprintf('Investment I = );

fprintf('Government G2 = );

fprintf('Consumption C2 = );

fprintf('Gross Domestic Product Y2 = );

fprintf('Disposable Income Yd2 = );

fprintf('Budget Deficit B2 = );

fprintf(' Multiplier: m = );

disp('-----------------------------------------------')

%% Plot Macroeconomic Model 2

subplot( );

Y=0:9000;

C2=C0+c*(Y2-T);

AE2=C+I+G2;

Y45=Y;

hold on;

yline( ,'k-.','G2=');

yline(,'k','I=');

yline(0);

plot(Y,C,'b', Y,Y45,'r', Y,AE,'b')

xlabel('Gross Domestic Product, Y'), ylabel ('Aggregate Expenditure, AE2, C2, I, G2');

title('Macroeconomic Model 2');

ylim([-500,9000]); xlim([0,9000]);

%% Plot Budget Deficit

subplot( );

Y=0:9000;

yline(,'k-.','G2=');

yline(,'b','T=');

yline(-,'r','B2=');

yline(0);

xlabel('Gross Domestic Product, Y'), ylabel ('G2, T2, B2');

title('Macroeconomic Model 2');

ylim([-500,9000]); xlim([0,9000]);

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Linked Data A Geographic Perspective

Authors: Glen Hart, Catherine Dolbear

1st Edition

1000218910, 9781000218916

More Books

Students also viewed these Databases questions

Question

Is their current strategy the best way to build Lakota Hills?

Answered: 1 week ago