Question
Q6.A random variable X has the following probability distribution: X 0 1 2 3 4 5 6 7 P(X) 0 k 2k 2k 3k k
Q6.A random variable X has the following probability distribution:
X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2 2k2 7k2+k
Find (a) k and hence evaluate P(0 < X < 5)
(b) P(1.5
Q7.The joint distribution function of a random variable (X,Y) is given by
Fxy(x,y)= {(1-e-ax)(1-e-by) ; x,y>=0, a,b>0
Find (i) Marginal distribution functions of X and Y.
(ii) P(X<=2 , Y<=2 and P(X<=2). Also show that X and Y are independent.
Q8. The joint probability mass function of (X , Y) is given by
Pxy(xi,yj)= {k xi2 yj2 ; i=1,2 ;j=1,2,3
(i) Find k.
(ii) Find the marginal probability mass function of X and Y.
Q9. The joint probability density function of a bivariate variable (X, Y) is given by
fxy (x, y) ={k (x + y) ; 0 < x < 3 , 0 < y < 3
where k is constant.
(i) Find the value of k.
(ii) Find the marginal probability density function of X and Y.
(iii) Are X and Y independent?
Q10.The joint probability density function of a bivariate variable (X, Y) is given by
fxy (x, y) ={k ( 2 x + y) ; 0 < x < 1 , 0 < y < 1 where k is constant.
(i) Find the value of k.
(ii) Find the marginal probability density function of X and Y.
(iii)Conditional density of X for given Y and use it to evaluate P (X<=1/2 / Y=1).
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started