Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

R Program > setwd(~/Dropbox/Teaching/EF4822_Spring2020) > da=read.csv(PredictorData2018part.csv) > head(da) yyyy Index D12 E12 1 1927 17.66 0.77 1.11 2 1928 24.35 0.85 1.38 3 1929 21.45

image text in transcribed

image text in transcribed

  • R Program

  • > setwd("~/Dropbox/Teaching/EF4822_Spring2020")

  • > da=read.csv("PredictorData2018part.csv") > head(da)

 yyyy Index D12 E12 
  1. 1 1927 17.66 0.77 1.11 
  2. 2 1928 24.35 0.85 1.38 
  3. 3 1929 21.45 0.97 1.61 
  4. 4 1930 15.34 0.98 0.97 
  5. 5 1931 8.12 0.82 0.61 
  6. 6 1932 6.89 0.50 0.41 
 b.m 0.3746886 0.2596667 0.3384578 0.5547454 1.1707317 1.4420843 
 tbl AAA 0.0317 0.0446 0.0426 0.0461 0.0303 0.0467 0.0148 0.0452 0.0241 0.0532 0.0004 0.0459 
 BAA lty cay 0.0532 0.0316 NaN 0.0560 0.0340 NaN 0.0595 0.0340 NaN 0.0671 0.0330 NaN 0.1042 0.0407 NaN 0.0842 0.0315 NaN 

ntis Rfree

  1. 1 0.076474752 0.0317 
  2. 2 0.063068738 0.0426 
  3. 3 0.163522172 0.0303 
  4. 4 0.113885891 0.0148 
  5. 5 -0.012944196 0.0241 
  6. 6 -0.005031571 0.0004 svar csp ik 
  1. 1 0.009419065 NaN NaN 
  2. 2 0.019799325 NaN NaN 
  3. 3 0.124614012 NaN NaN 
  4. 4 0.066648919 NaN NaN 
  5. 5 0.159402740 NaN NaN 
  6. 6 0.307451657 NaN NaN 
 infl eqis -0.022598870 0.26551235 -0.011560694 0.49742929 0.005847953 0.72059294 -0.063953488 0.30784749 -0.093167702 0.14466470 -0.102739726 0.03726708 
 CRSP_SPvw CRSP_SPvwx 0.35879164 0.2945602 0.38844041 0.3331307 
-0.08834698 -0.1213454 -0.26302852 -0.2958606 -0.45525321 -0.4892035 -0.08890738 -0.1483694 
 ltr 0.089448628 0.000827246 0.034099467 0.046429195 -0.053157349 0.168452113 
 corpr 0.07443637 0.02841156 0.03273004 0.07975053 -0.01850982 0.10820224 

> CRSP_SPvw=da[,20] > Rfree=da[,12] > exret=CRSP_SPvw-Rfree # stock market excess return > D12=da[,3] > Index=da[,2] > dp=log(D12/Index) # log dividend-to-price ratio > bm=da[,5] # book-to-market ratio

> T=length(exret) 

# use log dividend-to-price ratio to predict market excess return > lmdp=lm(exret[2:T]~dp[1:T-1]) > View(lmdp) > summary(lmdp)

Call: lm(formula = exret[2:T] ~ dp[1:T - 1]) 
Residuals: Min 1Q Median 3Q Max 
-0.60678 -0.13020 0.02396 0.14358 0.39421 
Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.33301 0.15107 2.204 0.0301 * dp[1:T - 1] 0.07474 0.04429 1.688 0.0950 . --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1   1 

Residual standard error: 0.1973 on 89 degrees of freedom Multiple R-squared: 0.03101, Adjusted R-squared: 0.02012 F-statistic: 2.848 on 1 and 89 DF, p-value: 0.09498

> anova(lmdp) Analysis of Variance Table 
Response: exret[2:T] Df Sum Sq Mean Sq F value Pr(>F) 
dp[1:T - 1] 1 0.1109 0.110873 2.8481 0.09498 . Residuals 89 3.4646 0.038928 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1   1 

> plot(x=dp[1:T-1],y=exret[2:T],main="exret~dp") > abline(lm(exret[2:T]~dp[1:T-1]))

# use book-to-market ratio to predict market excess return > lmbm=lm(exret[2:T]~bm[1:T-1])

> summary(lmbm) 
Call: lm(formula = exret[2:T] ~ bm[1:T - 1]) 
Residuals: Min 1Q Median 3Q Max 
-0.5587 -0.1417 0.0096 0.1400 0.4011 
Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.01411 0.04853 -0.291 0.7719 bm[1:T - 1] 0.16851 0.07839 2.150 0.0343 * --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1   1 

Residual standard error: 0.1954 on 89 degrees of freedom Multiple R-squared: 0.04936, Adjusted R-squared: 0.03868

As we discussed in class, this problem set asks you to use log dividend-price ratio and book-market ratio to predict the long-horizon 5 year stock market excess returns for United States. Please use the data set we used in Week 11 class, i.e., PredictorData2018part.csv, to answer the following questions. 4. For 5-year simple excess return, which variable predicts better, log dividend-price ratio or book-market ratio? For 5-year log excess return, which variable predicts better, log dividend-price ratio or book-market ratio? As we discussed in class, this problem set asks you to use log dividend-price ratio and book-market ratio to predict the long-horizon 5 year stock market excess returns for United States. Please use the data set we used in Week 11 class, i.e., PredictorData2018part.csv, to answer the following questions. 4. For 5-year simple excess return, which variable predicts better, log dividend-price ratio or book-market ratio? For 5-year log excess return, which variable predicts better, log dividend-price ratio or book-market ratio

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image_2

Step: 3

blur-text-image_3

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Finance questions

Question

2 Does a small company need a formal strategic plan?

Answered: 1 week ago