Question
R Program > setwd(~/Dropbox/Teaching/EF4822_Spring2020) > da=read.csv(PredictorData2018part.csv) > head(da) yyyy Index D12 E12 1 1927 17.66 0.77 1.11 2 1928 24.35 0.85 1.38 3 1929 21.45
-
R Program
-
> setwd("~/Dropbox/Teaching/EF4822_Spring2020")
-
> da=read.csv("PredictorData2018part.csv") > head(da)
yyyy Index D12 E12
-
1 1927 17.66 0.77 1.11
-
2 1928 24.35 0.85 1.38
-
3 1929 21.45 0.97 1.61
-
4 1930 15.34 0.98 0.97
-
5 1931 8.12 0.82 0.61
-
6 1932 6.89 0.50 0.41
b.m 0.3746886 0.2596667 0.3384578 0.5547454 1.1707317 1.4420843
tbl AAA 0.0317 0.0446 0.0426 0.0461 0.0303 0.0467 0.0148 0.0452 0.0241 0.0532 0.0004 0.0459
BAA lty cay 0.0532 0.0316 NaN 0.0560 0.0340 NaN 0.0595 0.0340 NaN 0.0671 0.0330 NaN 0.1042 0.0407 NaN 0.0842 0.0315 NaN
ntis Rfree
-
1 0.076474752 0.0317
-
2 0.063068738 0.0426
-
3 0.163522172 0.0303
-
4 0.113885891 0.0148
-
5 -0.012944196 0.0241
-
6 -0.005031571 0.0004 svar csp ik
-
1 0.009419065 NaN NaN
-
2 0.019799325 NaN NaN
-
3 0.124614012 NaN NaN
-
4 0.066648919 NaN NaN
-
5 0.159402740 NaN NaN
-
6 0.307451657 NaN NaN
infl eqis -0.022598870 0.26551235 -0.011560694 0.49742929 0.005847953 0.72059294 -0.063953488 0.30784749 -0.093167702 0.14466470 -0.102739726 0.03726708
CRSP_SPvw CRSP_SPvwx 0.35879164 0.2945602 0.38844041 0.3331307
-0.08834698 -0.1213454 -0.26302852 -0.2958606 -0.45525321 -0.4892035 -0.08890738 -0.1483694
ltr 0.089448628 0.000827246 0.034099467 0.046429195 -0.053157349 0.168452113
corpr 0.07443637 0.02841156 0.03273004 0.07975053 -0.01850982 0.10820224
> CRSP_SPvw=da[,20] > Rfree=da[,12] > exret=CRSP_SPvw-Rfree # stock market excess return > D12=da[,3] > Index=da[,2] > dp=log(D12/Index) # log dividend-to-price ratio > bm=da[,5] # book-to-market ratio
> T=length(exret)
# use log dividend-to-price ratio to predict market excess return > lmdp=lm(exret[2:T]~dp[1:T-1]) > View(lmdp) > summary(lmdp)
Call: lm(formula = exret[2:T] ~ dp[1:T - 1])
Residuals: Min 1Q Median 3Q Max
-0.60678 -0.13020 0.02396 0.14358 0.39421
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.33301 0.15107 2.204 0.0301 * dp[1:T - 1] 0.07474 0.04429 1.688 0.0950 . --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.1973 on 89 degrees of freedom Multiple R-squared: 0.03101, Adjusted R-squared: 0.02012 F-statistic: 2.848 on 1 and 89 DF, p-value: 0.09498
> anova(lmdp) Analysis of Variance Table
Response: exret[2:T] Df Sum Sq Mean Sq F value Pr(>F)
dp[1:T - 1] 1 0.1109 0.110873 2.8481 0.09498 . Residuals 89 3.4646 0.038928 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> plot(x=dp[1:T-1],y=exret[2:T],main="exret~dp") > abline(lm(exret[2:T]~dp[1:T-1]))
# use book-to-market ratio to predict market excess return > lmbm=lm(exret[2:T]~bm[1:T-1])
> summary(lmbm)
Call: lm(formula = exret[2:T] ~ bm[1:T - 1])
Residuals: Min 1Q Median 3Q Max
-0.5587 -0.1417 0.0096 0.1400 0.4011
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01411 0.04853 -0.291 0.7719 bm[1:T - 1] 0.16851 0.07839 2.150 0.0343 * --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.1954 on 89 degrees of freedom Multiple R-squared: 0.04936, Adjusted R-squared: 0.03868
As we discussed in class, this problem set asks you to use log dividend-price ratio and book-market ratio to predict the long-horizon 5 year stock market excess returns for United States. Please use the data set we used in Week 11 class, i.e., PredictorData2018part.csv, to answer the following questions. 4. For 5-year simple excess return, which variable predicts better, log dividend-price ratio or book-market ratio? For 5-year log excess return, which variable predicts better, log dividend-price ratio or book-market ratio? As we discussed in class, this problem set asks you to use log dividend-price ratio and book-market ratio to predict the long-horizon 5 year stock market excess returns for United States. Please use the data set we used in Week 11 class, i.e., PredictorData2018part.csv, to answer the following questions. 4. For 5-year simple excess return, which variable predicts better, log dividend-price ratio or book-market ratio? For 5-year log excess return, which variable predicts better, log dividend-price ratio or book-market ratioStep by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started