Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Security Awareness An effective computer security-awareness and training program requires proper planning, implementation, maintenance, and periodic evaluation. In general, a computer security-awareness and training program

Security Awareness

An effective computer security-awareness and training program requires proper planning, implementation, maintenance, and periodic evaluation. In general, a computer security-awareness and training program should encompass the following seven steps:

Step 1. Identify program scope, goals, and objectives.

The scope of the program should provide training to all types of people who interact with IT systems. Because users need training that relates directly to their use of particular systems, you need to supplement a large, organization-wide program with more system-specific programs.

Step 2. Identify training staff.

It is important that trainers have sufficient knowledge of computer security issues, principles, and techniques. It is also vital that they know how to communicate information and ideas effectively.

Step 3. Identify target audiences.

Not everyone needs the same degree or type of computer security information to do his or her job. A computer security-awareness and training program that distinguishes between groups of people, presents only the information that is needed by the particular audience, and omits irrelevant information will have the best results.

Step 4. Motivate management and employees.

To successfully implement an awareness and training program, it is important to gain the support of management and employees. Consider using motivational techniques to show management and employees how their participation in a computer security and awareness program will benefit the organization.

Step 5. Administer the program.

Several important considerations for administering the program include visibility, selection of appropriate training methods, topics, and materials, and presentation techniques.

Step 6. Maintain the program.

You should make an effort to keep abreast of changes in computer technology and security requirements. A training program that meets the needs of an organization today may become ineffective when the organization starts to use a new application or changes its environment, such as by connecting to the Internet.

Step 7. Evaluate the program.

An evaluation should attempt to ascertain how much information is retained, to what extent computer security procedures are being followed, and the general attitudes toward computer security.

A successful IT security program consists of the following:

Developing IT security policy that reflects business needs tempered by known risks.

Informing users of their IT security responsibilities, as documented in agency security policy and procedures.

Establishing processes for monitoring and reviewing the program.

You should focus security awareness and training on the entire user population of the organization. Management should set the example for proper IT security behavior within an organization. An awareness program should begin with an effort that you can deploy and implement in various ways and be aimed at all levels of the organization, including senior and executive managers. The effectiveness of this effort usually determines the effectiveness of the awareness and training program and how successful the IT security program will be.

Secure Network Life Cycle

By framing security within the context of IT governance, compliance, and risk management, and by building it with a sound security architecture at its core, the result is usually a less expensive and more effective process. Including security early in the information process within the system design life cycle (SDLC) usually results in less-expensive and more-effective security when compared to adding it to an operational system.

A general SDLC includes five phases:

Initiation

Acquisition and development

Implementation

Operations and maintenance

Disposition

Initiation Phase

The initiation phase of the SDLC includes the following:

Security categorization: This step defines three levels (low, moderate, and high) of potential impact on organizations or individuals should a breach of security occur (a loss of confidentiality, integrity, or availability). Security categorization standards help organizations make the appropriate selection of security controls for their information systems.

Preliminary risk assessment: This step results in an initial description of the basic security needs of the system. A preliminary risk assessment should define the threat environment in which the system will operate.

Acquisition and Development Phase

The acquisition and development phase of the SDLC includes the following:

Risk assessment: This step is an analysis that identifies the protection requirements for the system through a formal risk-assessment process. This analysis builds on the initial risk assessment that was performed during the initiation phase, but is more in depth and specific.

Security functional requirements analysis: This step is an analysis of requirements and can include the following components: system security environment, such as the enterprise information security policy and enterprise security architecture, and security functional requirements.

Security assurance requirements analysis: This step is an analysis of the requirements that address the developmental activities required and the assurance evidence needed to produce the desired level of confidence that the information security will work correctly and effectively. The analysis, based on legal and functional security requirements, is used as the basis for determining how much and what kinds of assurance are required.

Cost considerations and reporting: This step determines how much of the development cost you can attribute to information security over the life cycle of the system. These costs include hardware, software, personnel, and training.

Security planning: This step ensures that you fully document any agreed upon security controls, whether they are just planned or in place. The security plan also provides a complete characterization or description of the information system and attachments of or references to key documents that support the information security program of the agency. Examples of documents that support the information security program include a configuration management plan, a contingency plan, an incident response plan, a security awareness and training plan, rules of behavior, a risk assessment, a security test and evaluation results, system interconnection agreements, security authorizations and accreditations, and a plan of action and milestones.

Security control development: This step ensures that the security controls that the respective security plans describe are designed, developed, and implemented. The security plans for information systems that are currently in operation may call for the development of additional security controls to supplement the controls that are already in place or the modification of selected controls that are deemed less than effective.

Developmental security test and evaluation: This step ensures that security controls that you develop for a new information system are working properly and are effective. Some types of security controls, primarily those controls of a nontechnical nature, cannot be tested and evaluated until the information system is deployed. These controls are typically management and operational controls.

Other planning components: This step ensures that you consider all the necessary components of the development process when you incorporate security into the network life cycle. These components include the selection of the appropriate contract type, the participation by all the necessary functional groups within an organization, the participation by the certifier and accreditor, and the development and execution of the necessary contracting plans and processes.

Implementation Phase

The implementation phase of the SDLC includes the following:

Inspection and acceptance: This step ensures that the organization validates and verifies that the functionality that the specification describes is included in the deliverables.

System integration: This step ensures that the system is integrated at the operational site where you will deploy the information system for operation. You enable the security control settings and switches in accordance with the vendor instructions and the available security implementation guidance.

Security certification: This step ensures that you effectively implement the controls through established verification techniques and procedures. This step gives organization officials confidence that the appropriate safeguards and countermeasures are in place to protect the information system of the organization. Security certification also uncovers and describes the known vulnerabilities in the information system.

Security accreditation: This step provides the necessary security authorization of an information system to process, store, or transmit information that is required. This authorization is granted by a senior organization official and is based on the verified effectiveness of security controls to some agreed upon level of assurance and an identified residual risk to agency assets or operations.

Operations and Maintenance Phase

The operations and maintenance phase of the SDLC includes the following:

Configuration management and control: This step ensures that there is adequate consideration of the potential security impacts due to specific changes to an information system or its surrounding environment. Configuration management and configuration control procedures are critical to establishing an initial baseline of hardware, software, and firmware components for the information system and subsequently controlling and maintaining an accurate inventory of any changes to the system.

Continuous monitoring: This step ensures that controls continue to be effective in their application through periodic testing and evaluation. Security control monitoring, such as verifying the continued effectiveness of those controls over time, and reporting the security status of the information system to appropriate agency officials are essential activities of a comprehensive information security program.

Disposition Phase

The disposition phase of the SDLC includes the following:

Information preservation: This step ensures that you retain information, as necessary, to conform to current legal requirements and to accommodate future technology changes that can render the retrieval method of the information obsolete.

Media sanitization: This step ensures that you delete, erase, and write over data as necessary.

Hardware and software disposal: This step ensures that you dispose of hardware and software as directed by the information system security officer.

Models and Frameworks

The five-phase approach of the SDLC gives context to the process of designing, creating, and maintaining security architectures. It is based on NIST Publication 800-64 revision 2. Other frameworks and models exist, providing similar guidance to your security architecture:

The ISO 27000 series is a comprehensive set of controls comprising best practices in information security. It is about information security, not IT security. It is also an internationally recognized information security standard, broad in scope and generic in applicability. It focuses on risk identification, assessment, and management. It is aligned with common business goals:

Ensure business continuity

Minimize business damage

Maximize return on investments

Control Objectives for Information and Related Technology (COBIT) provides good practices across a domain and process framework and presents activities in a manageable and logical structure. The good practices provided by COBIT represent the consensus of experts. These good practices are strongly focused more on control and less on execution.

These practices will help optimize IT-enabled investments, ensure service delivery, and provide a measure against which to judge when things do go wrong. COBIT is generally considered complementary to ISO/IEC 27001 and 27002.

The Information Technology Infrastructure Library (ITIL) was developed under the supervision of the Central Computer and Telecommunications Agency in the UK. ITIL is a set of eight practice guidebooks covering most aspects of IT service management. The fourth service management set is Security Management. ITIL Security Management is based on the code of practice in ISO 27002.

Network Security Posture

By assessing all aspects of the networked business environment, it is possible to determine the ability of the organization to detect, defend against, and respond to network attacks. The following are the key activities:

Security posture assessment (also known as vulnerability assessment): The first step in planning network security requires an evaluation of the network security posture of the organization. The security posture assessment provides a snapshot of the security state of the network by conducting a thorough assessment of the network devices, servers, desktops, and databases. The effectiveness of the network security is analyzed against recognized industry best practices to identify the relative strengths and weaknesses of the environment and document specific vulnerabilities that could threaten the business.

Internal assessment: With so much attention devoted to threats and incidents by hackers, administrators may overlook the security of the internal, trusted network. The internal assessment is a controlled network attack simulation that is used to gauge the exposure present on internal systems, applications, and network devices. The assessment identifies the steps that are needed to thwart intentional attacks or unintentional mistakes from trusted insiders to effectively secure valuable information assets. To go beyond automated detection of vulnerabilities, you could simulate a real intruder in a controlled, safe manner to confirm vulnerabilities manually. The assessment provides a more structured approach to identifying vulnerabilities that may go undetected.

External assessment: The goal of an external assessment is to quantify the security risk that is associated with Internet-connected systems. After researching and confirming the registration of Internet devices, assessors scan the device for external visibility. Because most services have inherent and well-known vulnerabilities, it must be determined whether the services offered are potentially vulnerable.

Wireless assessment: The wireless assessment provides an evaluation of the security posture of the wireless network within the organization and identifies risks and exposures that are associated with a wireless deployment. Assessors analyze the wireless technology architecture and configurations to identify authorized and unauthorized access points and to recommend solutions to strengthen the security of the wireless infrastructure. Assessors also check outside customer buildings to find wireless network traffic leaking from the buildings.

Security posture assessment analysis and documentation: This assessment quantifies the security posture of the organization network by using metrics and graphs. The report should also provide technical details, including analysis of each IP address, an explanation of methods that are used to compromise network devices and systems, and a description of the likelihood that an attacker will use that same approach. The report then prioritizes the vulnerabilities, recommends actions to correct the security risks, and details remediation steps that will prevent future exploitation.

Network Security Testing

Security testing provides insight into the other SDLC activities, such as risk analysis and contingency planning. You should document security testing and make the documentation available for staff involved in other IT and security-related areas. Typically, you conduct network security testing during the implementation and operational stages, after the system has been developed, installed, and integrated.

During the implementation stage, you should conduct security testing and evaluation on specific parts of the system and on the entire system as a whole. Security test and evaluation (ST&E) is an examination or analysis of the protective measures that are placed on an information system after it is fully integrated and operational. The following are the objectives of the ST&E:

Uncover design, implementation, and operational flaws that could allow the violation of the security policy

Determine the adequacy of security mechanisms, assurances, and other properties to enforce the security policy

Assess the degree of consistency between the system documentation and its implementation

Security Testing Techniques

You can use security testing results in the following ways:

As a reference point for corrective action

To define mitigation activities to address identified vulnerabilities

As a benchmark to trace the progress of an organization in meeting security requirements

To assess the implementation status of system security requirements

To conduct cost and benefit analysis for improvements to system security

To enhance other lifecycle activities, such as risk assessments, certification and authorization (C&A), and performance-improvement efforts

There are several different types of security testing. Some testing techniques are predominantly manual, and other tests are highly automated. Regardless of the type of testing, the staff that sets up and conducts the security testing should have significant security and networking knowledge, including significant expertise in the following areas: network security, firewalls, IPSs, operating systems, programming, and networking protocols, such as TCP/IP.

Many testing techniques are available, including the following:

Network scanning

Vulnerability scanning

Password cracking

Log review

Integrity checkers

Virus detection

War dialing

War driving (802.11 or wireless LAN testing)

Penetration testing

Common Testing Tools

Many testing tools are available in the modern marketplace that you can use to test the security of your systems and networks. The following list is a collection of tools that are quite popular; some of the tools are freeware, some are not:

Nmap

GFI LanGuard

Tripwire

Nessus

Metasploit

SuperScan by Foundstone, a division of McAfee

Incident Response

Risk cannot be completely eliminated in some business environments.

Earlier I mentioned that a way to deal with risk is to reduce it by investing in security measures. The concept of diminishing returns applies to those security investments. However, also notice that each additional security investment yields a lower additional risk reduction than the previous investment. In economics, this is what is called diminishing returns. Also, notice that regardless of how many resources you dedicate toward mitigating a risk, you can never reduce it to zero. There will always be residual risk. If that residual risk is unacceptable for your organization, you could consider buying insurance against it. Buying insurance against a risk would be considered transferring the risk.

One way to eliminate risk is to simply withdraw from doing business at all, an unlikely scenario. For this reason, incident response has become an important component of the secure network life cycle. The breadth and sophistication of threat vectors in information security has increased exponentiallyIt is, then, almost required to implement an incident response capability to streamline the incident detection capabilities, contain the impact of those incidents to minimize loss and destruction, reduce the scope of weaknesses, and restore services within the parameters of the organization.

Implementing an incident response plan effectively can be challenging because of the amount and scope of the resources needed. The first critical step is to deploy an effective intrusion detection and prevention capability. Even if the incident response plan is not in place, incident detection and prevention can provide a first line of response. However, incident response is not completely effective without framing it within an incident response plan. Assessing the current and potential business impact of incidents is critical. Other crucial factors include the implementation of effective methods of collecting, analyzing, and reporting data. Also, it is important to define the framework of communication between the teams involved (for example, technical teams, human resources, legal) and between the organization and external entities (such as other incident response teams and law enforcement).

Disaster Recovery and Business Continuity Planning

Business continuity planning and disaster recovery procedures address the continuing operations of an organization in the event of a disaster or prolonged service interruption that affects the mission of the organization. Such plans should address an emergency response phase, a recovery phase, and a return to normal operation phase. You should identify the responsibilities of personnel during an incident and the resources that are available to them.

In reality, contingency and disaster recovery plans do not address every possible scenario or assumption. Rather, they focus on the events most likely to occur and they identify an acceptable method of recovery. Periodically, you should exercise the plans and procedures to ensure that they are effective and well understood.

Business continuity planning provides a short- to medium-term framework to continue the organizational operations. The following are objectives of business continuity planning:

Moving or relocating critical business components and people to a remote location while the original location is being repaired

Using different channels of communication to deal with customers, shareholders, and partners until operations return to normal

Disaster recovery is the process of regaining access to the data, hardware, and software necessary to resume critical business operations after a natural or human-induced disaster. A disaster recovery plan should also include plans for coping with the unexpected or sudden loss of key personnel. A disaster recovery plan is part of a larger process known as business continuity planning.

Based on this article,please answer in your own words-

- what do you think should be done to improve not only the secure quality of coding that an employee might be involved in but also the deployment of that code into the "live" production environment -- so as to avoid risk? a summary of 3 pages

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Students also viewed these Databases questions