Answered step by step
Verified Expert Solution
Question
1 Approved Answer
SEM Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Audit Bain Distributions JAGS Machine Learning Meta-Analysis Network Sum Structural Equation Modeling Chi Square Test Statistic
SEM Descriptives T-Tests ANOVA Mixed Models Regression Frequencies Factor Audit Bain Distributions JAGS Machine Learning Meta-Analysis Network Sum Structural Equation Modeling Chi Square Test Statistic (unscaled) Enter lavaan syntax below dif AIC BIC # measurement model Model 35.0000 3157.5821 3229.4243 38.1252 0.3292 ind60 =~ x1 + x2 + x3 dem60 =~ y y2 + y3 dem65 =~ y5 + y6 + y7 + y8 # regressions Parameter Estimates dem60 ~ ind60 Z P Cl (upper) dem65 ~ ind60 + dem60 label CI (lower) # residual correlations ind60 1.0000 0.0000 1.0000 - y5 x1 1.0000 ind60 X2 2.1804 0. 1385 15.7416 0.0000 1.9089 2.4518 y2 - y4 + yb 1.8185 0. 1520 11.9672 0.0000 1,5207 2. 1163 y3 - y7 ind60 x3 1.0000 1.0000 y4 y8 dem60 y1 1.0000 0.0000 V6 V8 dem60 y2 1.2567 0. 1824 6.8886 5.6359e -12 1.8992 1.6143 dem60 y3 1.057 0. 1514 6.9870 2.8080e-12 0.7610 1.3544 Ctrl + Enter to apply dem60 y4 1.2648 D. 1450 8.7223 0.0000 0.9806 1.5490 dem65 V5 1.0000 2.0000 1.0000 1.0000 Data dem65 y6 1. 1857 D. 1688 7.0238 2.1587e -12 0.8548 1.5166 dem65 V7 1.2795 0. 1599 8.0019 1.3323e-15 0.9661 1.5929 O Raw O Variance-covariance matrix dem65 V8 1.2659 0. 1581 8.0067 1.1102e -15 0.9561 1.5758 Sample size 0 dem60 ind60 1.4830 0.3991 3.7154 0.0002 0.7007 2.2653 dem65 ind60 0.5723 0.2213 2.5861 0.0097 0. 1386 1.0061 Statistics dem65 dem60 0.8373 0.0984 8.5138 0.0090 0.6446 1.0301 0.6237 0.3583 1.7405 0.0818 -0.0786 1.3260 y1 y2 y4 1.3131 0.7020 1.8706 0. 0614 -0.0627 2.6890 Error Calculation Additional fit measures y2 yo 2. 1529 0.7338 2.9339 0.0033 0.7147 3.5910 O Standard R-squared y3 y7 0.7950 0.6077 1.3082 0. 1908 0.3961 1.9860 Robust y4 y8 0.3482 0.4422 0.7874 0.4310 -0.5186 1.2150 OFitted covariances / correlations y6 y8 1.3562 0.5683 2.3864 0.0170 0.2423 2.4700 Bootstrap Observed covariances / correlations x 1 x1 0.0815 0.0195 4.1842 2.86140 -5 0.0434 0.1197 Bootstrap samples 1000 Residual covariances / correlations *2 x2 0.1198 0.0697 1.7184 0.0857 -0.0168 0.2565 x3 x3 0.4667 0.0902 5.1766 2.25990 -7 0.2900 0.6434 Mardia's coefficient 1.8914 0.4444 4.2558 2.0827e -5 1.0203 2.7625 y2 7.3729 1.3739 5.3664 8.0320e -8 4.6801 10.0657 Modification indices 5.0675 0.9517 5.3245 1.0124e -7 3.2021 6.9328 3 1 3 1 3 4 3 1 3 1.6999 4.5959 Hide low indices 3.1479 0.7388 4.2609 2.0358e -5 2.3510 0.4802 4.8954 9.8095e -7 1.4097 3.2922 Threshold 10 4.9540 0.9142 5.4186 6.0056e -8 3.1621 6.7459 3.4314 0.7128 4.8136 1.4820e -6 2.0342 4.8285 Figure 4
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started